File size: 1,140 Bytes
7e4deac
 
0a478f6
7e4deac
81578be
0a478f6
 
 
81578be
0a478f6
7e4deac
81578be
7e4deac
81578be
 
 
 
 
7e4deac
81578be
0a478f6
 
 
 
e913fd2
0a478f6
e913fd2
 
ad4e39f
e913fd2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
import os
from dotenv import load_dotenv
from transformers import pipeline, AutoTokenizer

load_dotenv()

# Load a larger Hugging Face model
model_name = "EleutherAI/gpt-neo-2.7B"
generator = pipeline("text-generation", model=model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)

def modelFeedback(ats_score, resume_data):
    input_prompt = f"""
    You are now an ATS Score analyzer and given ATS Score is {int(ats_score * 100)}%. 
    Your task is to provide feedback to the user based on the ATS score.
    Print ATS score first. Mention where the resume is good and where the resume lacks. 
    Talk about each section of the user's resume and talk about good and bad points of it. 
    Resume Data: {resume_data}
    """
    
    # Tokenize the input to check its length
    input_ids = tokenizer(input_prompt, return_tensors="pt").input_ids
    input_length = input_ids.shape[1]
    
    print(f"Input length: {input_length}")

    # Generate response with max_new_tokens instead of max_length
    response = generator(input_prompt, max_new_tokens=150, num_return_sequences=1)

    return response[0]['generated_text']