File size: 38,183 Bytes
9f279fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bf9ecc0
9f279fb
 
 
 
bf9ecc0
 
 
 
9f279fb
 
 
 
 
bf9ecc0
9f279fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1eb802e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f279fb
bf9ecc0
 
1eb802e
9f279fb
 
 
 
 
 
 
 
 
bf9ecc0
9f279fb
 
 
bf9ecc0
9f279fb
bf9ecc0
9f279fb
 
1eb802e
 
 
 
 
 
 
 
 
 
 
 
 
bf9ecc0
 
1eb802e
9f279fb
 
 
 
 
 
 
 
 
 
bf9ecc0
9f279fb
 
 
bf9ecc0
9f279fb
bf9ecc0
 
 
 
 
 
9f279fb
 
bf9ecc0
9f279fb
1eb802e
 
 
9f279fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bf9ecc0
9f279fb
 
bf9ecc0
9f279fb
 
 
1eb802e
 
 
 
 
 
9f279fb
 
 
 
 
 
 
 
1eb802e
 
 
9f279fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bf9ecc0
 
 
 
 
 
9f279fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bf9ecc0
1eb802e
 
bf9ecc0
1eb802e
 
 
9f279fb
 
bf9ecc0
9f279fb
 
bf9ecc0
 
 
 
9f279fb
1eb802e
 
 
 
bf9ecc0
9f279fb
bf9ecc0
1eb802e
 
bf9ecc0
1eb802e
 
 
 
 
 
 
 
 
9f279fb
 
 
 
bf9ecc0
 
 
 
 
 
9f279fb
bf9ecc0
9f279fb
bf9ecc0
9f279fb
 
bf9ecc0
 
9f279fb
 
 
 
 
 
 
 
 
 
bf9ecc0
9f279fb
 
 
 
 
 
 
 
 
bf9ecc0
9f279fb
 
 
 
 
 
1eb802e
 
 
9f279fb
 
1eb802e
 
 
9f279fb
 
 
 
 
1eb802e
 
 
9f279fb
 
 
 
1eb802e
 
 
 
 
 
9f279fb
bf9ecc0
9f279fb
1eb802e
 
 
bf9ecc0
9f279fb
bf9ecc0
1eb802e
 
 
9f279fb
1eb802e
 
 
 
 
9f279fb
bf9ecc0
 
 
 
 
 
 
 
 
 
 
 
 
9f279fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bf9ecc0
9f279fb
 
 
 
 
bf9ecc0
9f279fb
 
 
 
 
bf9ecc0
 
 
 
 
 
 
9f279fb
bf9ecc0
 
9f279fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bf9ecc0
9f279fb
 
 
 
 
 
 
 
bf9ecc0
9f279fb
bf9ecc0
 
 
9f279fb
 
 
 
bf9ecc0
 
 
 
 
 
9f279fb
bf9ecc0
 
9f279fb
 
 
bf9ecc0
9f279fb
 
 
 
 
 
bf9ecc0
9f279fb
 
 
 
 
 
 
 
 
bf9ecc0
 
 
9f279fb
 
 
bf9ecc0
 
 
9f279fb
bf9ecc0
 
9f279fb
bf9ecc0
 
9f279fb
 
 
 
 
 
 
 
 
 
 
 
 
 
bf9ecc0
9f279fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bf9ecc0
 
 
9f279fb
 
bf9ecc0
9f279fb
 
bf9ecc0
 
9f279fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bf9ecc0
1eb802e
 
 
 
 
 
 
 
 
bf9ecc0
9f279fb
 
 
 
 
 
bf9ecc0
9f279fb
bf9ecc0
9f279fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bf9ecc0
9f279fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bf9ecc0
9f279fb
bf9ecc0
9f279fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bf9ecc0
9f279fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bf9ecc0
9f279fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bf9ecc0
9f279fb
 
 
 
 
bf9ecc0
 
 
 
9f279fb
 
 
 
 
 
 
 
bf9ecc0
9f279fb
 
 
 
 
 
bf9ecc0
9f279fb
bf9ecc0
 
9f279fb
 
bf9ecc0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f279fb
bf9ecc0
 
 
 
 
 
 
 
 
 
9f279fb
1eb802e
 
 
 
9f279fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bf9ecc0
 
 
 
 
9f279fb
 
 
 
 
bf9ecc0
 
 
 
 
 
 
9f279fb
 
1eb802e
 
 
bf9ecc0
1eb802e
 
 
9f279fb
 
 
 
 
1eb802e
 
 
9f279fb
bf9ecc0
9f279fb
 
 
bf9ecc0
9f279fb
 
 
 
 
 
bf9ecc0
9f279fb
 
 
bf9ecc0
 
9f279fb
1eb802e
 
 
 
 
bf9ecc0
 
1eb802e
 
 
9f279fb
bf9ecc0
 
 
 
 
 
 
 
 
 
 
 
 
 
9f279fb
 
 
bf9ecc0
 
 
 
 
 
 
 
 
 
 
 
 
9f279fb
 
 
 
bf9ecc0
1eb802e
 
 
 
 
 
 
 
bf9ecc0
9f279fb
 
bf9ecc0
 
 
 
 
 
 
 
 
 
 
 
 
9f279fb
 
1eb802e
 
 
 
9f279fb
 
 
 
 
 
 
 
bf9ecc0
9f279fb
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.

# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at

#     http://www.apache.org/licenses/LICENSE-2.0

# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""This script provides a simple web interface that allows users to interact with."""

import argparse
import asyncio
import base64
import json
import logging
import os
import textwrap
from argparse import ArgumentParser
from collections import namedtuple
from datetime import datetime
from functools import partial

import gradio as gr
import pdfplumber
from bot_requests import BotClient
from crawl_utils import CrawlUtils
from docx import Document

os.environ["NO_PROXY"] = "localhost,127.0.0.1"  # Disable proxy

logging.root.setLevel(logging.INFO)

IMAGE_FILE_TYPE = [".png", ".jpeg", ".jpg"]
TEXT_FILE_TYPE = [".pdf", ".txt", ".md", ".docx"]

SEARCH_INFO_PROMPT = textwrap.dedent(
    """\
    ## 当前时间
    {date}

    ## 对话
    {context}
    问题:{query}

    根据当前时间和对话完成以下任务:
    1. 查询判断:是否需要借助搜索引擎查询外部知识回答用户当前问题。
    2. 问题改写:改写用户当前问题,使其更适合在搜索引擎查询到相关知识。
    注意:只在**确有必要**的情况下改写,输出不超过 5 个改写结果,不要为了凑满数量而输出冗余问题。

    ## 输出如下格式的内容(只输出 JSON ,不要给出多余内容):
    ```json
    {{
        "is_search":true/false,
        "query_list":["改写问题1","改写问题2"...]
    }}```
    """
)
ANSWER_PROMPT = textwrap.dedent(
    """\
    下面你会收到多段参考资料和一个问题。你的任务是阅读参考资料,并根据参考资料中的信息回答对话中的问题。
    以下是当前时间和参考资料:
    ---------
    ## 当前时间
    {date}

    ## 参考资料
    {reference}

    请严格遵守以下规则:
    1. 回答必须结合问题需求和当前时间,对参考资料的可用性进行判断,避免在回答中使用错误或过时的信息。
    2. 当参考资料中的信息无法准确地回答问题时,你需要在回答中提供获取相应信息的建议,或承认无法提供相应信息。
    3. 你需要优先根据百度高权威信息、百科、官网、权威机构、专业网站等高权威性来源的信息来回答问题,
       但务必不要用“(来源:xx)”这类格式给出来源,
       不要暴露来源网站中的“_百度高权威信息”,
       也不要出现'根据参考资料','根据当前时间'等表述。
    4. 更多地使用参考文章中的相关数字、案例、法律条文、公式等信息,让你的答案更专业。
    5. 只要使用了参考资料中的任何内容,必须在句末或段末加上资料编号,如 "[1]" 或 "[2][4]"。不要遗漏编号,也不要随意编造编号。编号必须来源于参考资料中已有的标注。
    ---------
    下面请结合以上信息,回答问题,补全对话:
    ## 对话
    {context}
    问题:{query}

    直接输出回复内容即可。
    """
)


def get_args() -> argparse.Namespace:
    """
    Parse and return command line arguments for the ERNIE chatbot demo.
    Configures server settings, model endpoints, and operational parameters.

    Returns:
        argparse.Namespace: Parsed command line arguments containing all the above settings.
    """
    parser = ArgumentParser(description="ERNIE models web chat demo.")

    parser.add_argument(
        "--server-port", type=int, default=7860, help="Demo server port."
    )
    parser.add_argument(
        "--server-name", type=str, default="0.0.0.0", help="Demo server name."
    )
    parser.add_argument(
        "--max_char",
        type=int,
        default=20000,
        help="Maximum character limit for messages.",
    )
    parser.add_argument(
        "--max_retry_num", type=int, default=3, help="Maximum retry number for request."
    )
    parser.add_argument(
        "--model_map",
        type=str,
        default='{"ernie-4.5-turbo-vl-preview": "https://qianfan.baidubce.com/v2"}',
        help="""JSON string defining model name to endpoint mappings.
            Required Format:
            {"ERNIE-4.5-VL": "http://localhost:port/v1"}

            Note:
            - Endpoint must be valid HTTP URL
            - Specify ONE model endpoint in JSON format.
            - Prefix determines model capabilities:
            * ERNIE-4.5-VL: Multimodal models (image+text)
            """,
    )
    parser.add_argument(
        "--web_search_service_url",
        type=str,
        default="https://qianfan.baidubce.com/v2/ai_search/chat/completions",
        help="Web Search Service URL.",
    )
    parser.add_argument(
        "--qianfan_api_key",
        type=str,
        default=os.environ.get('API_SEARCH_KEY'),
        help="Web Search Service API key.",
    )
    parser.add_argument(
        "--max_crawler_threads",
        type=int,
        default=10,
        help="The maximum number of concurrent crawler threads.",
    )
    parser.add_argument(
        "--concurrency_limit", type=int, default=10, help="Default concurrency limit."
    )
    parser.add_argument(
        "--max_queue_size", type=int, default=50, help="Maximum queue size for request."
    )

    args = parser.parse_args()
    try:
        args.model_map = json.loads(args.model_map)

        # Validation: Check at least one model exists
        if len(args.model_map) < 1:
            raise ValueError("model_map must contain at least one model configuration")
    except json.JSONDecodeError as e:
        raise ValueError("Invalid JSON format for --model_map") from e
    return args


class GradioEvents:
    """
    Handles Gradio UI events and manages chatbot interactions including conversation flow and file processing.

    Provides methods for maintaining chat history, extracting text from files, and generating image URLs.
    Supports both text and multimodal interactions with web search integration when needed.

    Manages chatbot state including conversation history, file attachments and UI updates.
    Includes utilities for reading various file formats and handling streaming AI responses.
    """

    @staticmethod
    def get_history_conversation(
        task_history: list, image_history: dict, file_history: dict
    ) -> tuple:
        """
        Constructs complete conversation history from stored components including text messages,
        attached files and images. Processes each dialogue turn by combining the raw query/response
        pairs with any associated multimedia attachments. For multimodal models, image URLs are
        formatted with base64 encoding while text files have their content extracted inline.

        Args:
            task_history (list): List of tuples containing user queries and responses.
            image_history (dict): Dictionary mapping indices to lists of image urls.
            file_history (dict): Dictionary mapping indices to lists of file urls.

        Returns:
            tuple: Tuple containing two elements:
                - conversation (list): List of dictionaries representing the conversation history.
                - conversation_str (str): String representation of the conversation history.
        """
        conversation = []
        conversation_str = ""
        for idx, (query_h, response_h) in enumerate(task_history):
            conversation_str += f"user:\n{query_h}\nassistant:\n{response_h}\n"
            if idx in file_history:
                for file_url in file_history[idx]:
                    query_h += f"参考资料[{idx + 1}]:\n资料来源:用户上传\n{GradioEvents.get_file_text(file_url)}\n"
            if idx in image_history:
                content = []
                for image_url in image_history[idx]:
                    content.append(
                        {
                            "type": "image_url",
                            "image_url": {"url": GradioEvents.get_image_url(image_url)},
                        }
                    )
                content.append({"type": "text", "text": query_h})
                conversation.append({"role": "user", "content": content})
            else:
                conversation.append({"role": "user", "content": query_h})
            conversation.append({"role": "assistant", "content": response_h})
        return conversation, conversation_str

    @staticmethod
    def get_search_query(
        conversation: list, model_name: str, bot_client: BotClient
    ) -> list:
        """
        Processes conversation history to generate search queries by sending the conversation context
        to the model and parsing its JSON response. Handles model output validation and extracts
        structured search queries containing query lists. Raises Gradio errors for
        invalid JSON responses from the model.

        Args:
            conversation (list): List of dictionaries representing the conversation history.
            model_name (str): Name of the model being used.
            bot_client (BotClient): An instance of BotClient.

        Returns:
            list: List of strings representing the search query.
        """
        req_data = {"messages": conversation}
        try:
            response = bot_client.process(model_name, req_data)
            search_query = response["choices"][0]["message"]["content"]
            start = search_query.find("{")
            end = search_query.rfind("}") + 1
            if start >= 0 and end > start:
                search_query = search_query[start:end]
            search_query = json.loads(search_query)
            return search_query
        except json.JSONDecodeError:
            logging.error("error: model output is not valid JSON format ")
            return None

    @staticmethod
    def process_files(
        diologue_turn: int,
        files_url: list,
        file_history: dict,
        image_history: dict,
        bot_client: BotClient,
        max_file_char: int,
    ):
        """
        Processes file URLs and generates input content for the model.
        Handles both text and image files by:
        1. For text files (PDF, TXT, MD, DOCX): extracts content and adds to file history with reference numbering
        2. For image files (PNG, JPEG, JPG): generates base64 encoded URLs for model input
        Maintains character limits for text references and ensures no duplicate file processing.

        Args:
            diologue_turn (int): Index of the current dialogue turn.
            files_url (list): List of uploaded file urls.
            file_history (dict): Dictionary mapping indices to lists of file urls.
            image_history (dict): Dictionary mapping indices to lists of image urls.
            bot_client (BotClient): An instance of BotClient.
            max_file_char (int): Maximum number of characters allowed for references.

        Returns:
            tuple: A tuple containing three elements:
                - input_content (list): List of dictionaries representing the input content.
                - file_contents (str): String representation of the file contents.
                - ref_file_num (int): Number of reference files added.
        """
        input_content = []
        file_contents = ""
        ref_file_num = 0
        if not files_url:
            return input_content, file_contents, ref_file_num

        for file_url in files_url:
            extionsion = "." + file_url.split(".")[-1]
            if extionsion in TEXT_FILE_TYPE and (
                len(file_history) == 0
                or file_url not in list(file_history.values())[-1]
            ):
                file_history[diologue_turn] = file_history.get(diologue_turn, []) + [
                    file_url
                ]
                file_name = file_url.split("/")[-1]
                file_contents_words = bot_client.cut_chinese_english(file_contents)

                if len(file_contents_words) < max_file_char - 20:
                    ref_file_num += 1
                    file_content = (
                        f"\n参考资料[{len(file_history[diologue_turn])}]:\n资料来源:"
                        + f"用户上传\n{file_name}\n{GradioEvents.get_file_text(file_url)}\n"
                    )
                    file_content_words = bot_client.cut_chinese_english(file_content)
                    max_char = min(
                        len(file_content_words),
                        max_file_char - len(file_contents_words),
                    )
                    file_content_words = file_content_words[:max_char]
                    file_contents += "".join(file_content_words) + "\n"
            elif extionsion in IMAGE_FILE_TYPE and (
                len(image_history) == 0
                or file_url not in list(image_history.values())[-1]
            ):
                image_history[diologue_turn] = image_history.get(diologue_turn, []) + [
                    file_url
                ]
                input_content.append(
                    {
                        "type": "image_url",
                        "image_url": {"url": GradioEvents.get_image_url(file_url)},
                    }
                )
        return input_content, file_contents, ref_file_num

    @staticmethod
    async def chat_stream(
        query: str,
        task_history: list,
        image_history: dict,
        file_history: dict,
        model_name: str,
        files_url: list,
        search_state: bool,
        max_crawler_threads: int,
        bot_client: BotClient,
        max_ref_char: int = 18000,
    ) -> dict:
        """
        Handles streaming chat queries with text and multimodal inputs.
        Builds conversation history with attachments, checks if web search
        is needed, and streams responses.

        Args:
            query (str): User input query string.
            task_history (list): List of tuples containing user queries and responses.
            image_history (dict): Dictionary mapping indices to lists of image urls.
            file_history (dict): Dictionary mapping indices to lists of file urls.
            model_name (str): Name of the model being used.
            files_url (list): List of uploaded file urls.
            search_state (bool): Whether to perform a search.
            max_crawler_threads (int): Maximum number of concurrent crawler threads.
            bot_client (BotClient): An instance of BotClient.
            max_ref_char (int): Maximum number of characters allowed for references.

        Returns:
            dict: Dictionary containing the following keys:
                - "type": The message type.
                - "content": The content of the message.
        """
        conversation, conversation_str = GradioEvents.get_history_conversation(
            task_history, image_history, file_history
        )

        # Step 1: Determine whether a search is needed and obtain the corresponding query list
        search_info_res = {}
        if search_state:
            search_info_message = SEARCH_INFO_PROMPT.format(
                date=datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
                context=conversation_str,
                query=query,
            )
            search_conversation = [{"role": "user", "content": search_info_message}]
            search_info_res = GradioEvents.get_search_query(
                search_conversation, model_name, bot_client
            )
            if search_info_res is None:
                search_info_res = {"is_search": True, "query_list": [query]}

        # Process files
        diologue_turn = len(task_history)
        if search_info_res.get("is_search", False) and search_info_res.get(
            "query_list", []
        ):
            max_file_char = max_ref_char // 2
        else:
            max_file_char = max_ref_char
        input_content, file_contents, ref_file_num = GradioEvents.process_files(
            diologue_turn,
            files_url,
            file_history,
            image_history,
            bot_client,
            max_file_char,
        )

        # Step 2: If a search is needed, obtain the corresponding query results
        if search_info_res.get("is_search", False) and search_info_res.get(
            "query_list", []
        ):
            yield {"type": "search_result", "content": "🧐 努力搜索中... ✨"}
            search_result = bot_client.get_web_search_res(search_info_res["query_list"])

            max_search_result_char = max_ref_char - len(
                bot_client.cut_chinese_english(file_contents)
            )
            complete_search_result = await GradioEvents.get_complete_search_content(
                ref_file_num,
                search_result,
                max_crawler_threads,
                bot_client,
                max_search_result_char,
            )
            complete_ref = file_contents + complete_search_result

            if complete_search_result:
                query = ANSWER_PROMPT.format(
                    date=datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
                    reference=complete_ref,
                    context=conversation_str,
                    query=query,
                )
                yield {"type": "search_result", "content": complete_ref}
            else:
                query += "\n" + file_contents
                yield {"type": "search_result", "content": ""}
        else:
            query += "\n" + file_contents

        # Step 3: Answer the user's query
        if image_history.get(diologue_turn, []):
            input_content.append({"type": "text", "text": query})
            conversation.append({"role": "user", "content": input_content})
        else:
            conversation.append({"role": "user", "content": query})

        try:
            req_data = {"messages": conversation}
            for chunk in bot_client.process_stream(model_name, req_data):
                if "error" in chunk:
                    raise Exception(chunk["error"])

                message = chunk.get("choices", [{}])[0].get("delta", {})
                content = message.get("content", "")

                if content:
                    yield {"type": "answer", "content": content}

        except Exception as e:
            raise gr.Error("Exception: " + repr(e))

    @staticmethod
    async def predict(
        query: str,
        chatbot: list,
        task_history: list,
        image_history: dict,
        file_history: dict,
        model: str,
        file_url: list,
        search_state: bool,
        max_crawler_threads: int,
        bot_client: BotClient,
    ) -> tuple:
        """
        Processes user queries and generates responses through streaming interaction.
        Handles both text and file inputs, manages conversation history updates,
        and optionally performs web searches when enabled. Yields intermediate
        answers as they become available.

        Args:
            query (str): User input query string.
            chatbot (list): List of dictionaries representing the chatbot history.
            task_history (list): List of tuples containing user queries and responses.
            image_history (dict): Dictionary mapping indices to lists of image urls.
            file_history (dict): Dictionary mapping indices to lists of file urls.
            model (str): Name of the model being used.
            file_url (list): List of uploaded file urls.
            search_state (bool): Whether to perform a search.
            max_crawler_threads (int): Maximum number of concurrent crawler threads.
            bot_client (BotClient): An instance of BotClient.

        Returns:
            tuple: Tuple containing two elements:
                - chatbot (list): Updated chatbot history after adding the user's query.
                - search_result (str): Search result obtained from the AI search service.
        """

        logging.info(f"User: {query}")
        # First yield the chatbot with user message
        chatbot.append({"role": "user", "content": query})
        yield chatbot, "🛠️ 正在解析问题意图,判断是否需要搜索... 🔍"
        await asyncio.sleep(0.05)  # Wait to refresh

        response = ""
        search_result = None
        async for new_text in GradioEvents.chat_stream(
            query,
            task_history,
            image_history,
            file_history,
            model,
            file_url,
            search_state,
            max_crawler_threads,
            bot_client,
        ):
            if not isinstance(new_text, dict):
                continue

            if new_text.get("type") == "search_result":
                search_result = new_text["content"]
                yield chatbot, search_result
                continue
            elif new_text.get("type") == "answer":
                response += new_text["content"]

            # Remove previous message if exists
            if chatbot[-1].get("role") == "assistant":
                chatbot.pop(-1)

            if response:
                chatbot.append({"role": "assistant", "content": response})
                yield chatbot, search_result
                await asyncio.sleep(0)  # Wait to refresh

        logging.info(f"History: {task_history}")
        task_history.append((query, response))
        logging.info(f"ERNIE models: {response}")

    @staticmethod
    async def regenerate(
        chatbot: list,
        task_history: list,
        image_history: dict,
        file_history: dict,
        model: str,
        file_url: list,
        search_state: bool,
        max_crawler_threads: int,
        bot_client: BotClient,
    ) -> tuple:
        """
        Regenerates the chatbot's last response by reprocessing the previous user query with current context.
        Maintains conversation continuity by preserving history while removing the last interaction,
        then reinvokes the prediction pipeline with identical parameters to generate a fresh response.

        Args:
            chatbot (list): List of dictionaries representing the chatbot history.
            task_history (list): List of tuples containing user queries and responses.
            image_history (dict): Dictionary mapping indices to lists of image urls.
            file_history (dict): Dictionary mapping indices to lists of file urls.
            model (str): Name of the model being used.
            file_url (list): List of uploaded file urls.
            search_state (bool): Whether to perform a search.
            max_crawler_threads (int): Maximum number of concurrent crawler threads.
            bot_client (Botclient): An instance of BotClient.

        Returns:
            tuple: Tuple containing two elements:
                - chatbot (list): Updated chatbot history after removing the last user query and response.
                - search_result (str): Search result obtained from the AI search service.
        """
        if not task_history:
            yield chatbot, None
            return
        # Pop the last user query and bot response from task_history
        item = task_history.pop(-1)
        dialogue_turn = len(task_history)
        if (dialogue_turn) in image_history:
            del image_history[dialogue_turn]
        if (dialogue_turn) in file_history:
            del file_history[dialogue_turn]
        while len(chatbot) != 0 and chatbot[-1].get("role") == "assistant":
            chatbot.pop(-1)
        chatbot.pop(-1)

        async for chunk, search_result in GradioEvents.predict(
            item[0],
            chatbot,
            task_history,
            image_history,
            file_history,
            model,
            file_url,
            search_state,
            max_crawler_threads,
            bot_client,
        ):
            yield chunk, search_result

    @staticmethod
    def reset_user_input() -> gr.update:
        """
        Reset user input box content.

        Returns:
            gr.update: Update object indicating that the value should be set to an empty string
        """
        return gr.update(value="")

    @staticmethod
    def reset_state() -> namedtuple:
        """
        Reset the state of the chatbot.

        Returns:
            namedtuple: A namedtuple containing the following fields:
                - chatbot (list): Empty list
                - task_history (list): Empty list
                - image_history (dict): Empty dictionary
                - file_history (dict): Empty dictionary
                - file_btn (gr.update): Value set to None
                - search_result (gr.update): Value set to None
        """
        GradioEvents.gc()

        reset_result = namedtuple(
            "reset_result",
            [
                "chatbot",
                "task_history",
                "image_history",
                "file_history",
                "file_btn",
                "search_result",
            ],
        )
        return reset_result(
            [],  # clear chatbot
            [],  # clear task_history
            {},  # clear image_history
            {},  # clear file_history
            gr.update(value=None),  # clear file_btn
            gr.update(value=None),  # reset search_result
        )

    @staticmethod
    def gc():
        """Run garbage collection."""
        import gc

        gc.collect()

    @staticmethod
    def search_toggle_state(search_state: bool) -> bool:
        """
        Toggle search state between enabled and disabled.

        Args:
            search_state (bool): Current search state

        Returns:
            bool: New search result visible state
        """
        return gr.update(visible=search_state)

    @staticmethod
    def get_image_url(image_path: str) -> str:
        """
        Encode image file to Base64 format and generate data URL.
        Reads an image file from disk, encodes it as Base64, and formats it
        as a data URL that can be used directly in HTML or API requests.

        Args:
            image_path (str): The path to the image file.

        Returns:
            str: The URL of the image file.
        """
        base64_image = ""
        extension = image_path.split(".")[-1]
        with open(image_path, "rb") as image_file:
            base64_image = base64.b64encode(image_file.read()).decode("utf-8")
        url = f"data:image/{extension};base64,{base64_image}"
        return url

    @staticmethod
    def get_file_text(file_path: str) -> str:
        """
        Get the contents of a file as plain text.

        Args:
            file_path (str): The path to the file to read.

        Returns:
            str: The contents of the file as plain text.
        """
        if file_path is None:
            return ""
        if file_path.endswith(".pdf"):
            return GradioEvents.read_pdf(file_path)
        elif file_path.endswith(".docx"):
            return GradioEvents.read_docx(file_path)
        elif file_path.endswith(".txt") or file_path.endswith(".md"):
            return GradioEvents.read_txt_md(file_path)
        else:
            return ""

    @staticmethod
    def read_pdf(pdf_path: str) -> str:
        """
        Extracts text content from a PDF file using pdfplumber library. Processes each page sequentially
        and concatenates all extracted text. Handles potential extraction errors gracefully by returning
        an empty string and logging the error.

        Args:
            pdf_path (str): Path to the PDF file.

        Returns:
            str: Text extracted from the PDF file.
        """
        try:
            text = ""
            with pdfplumber.open(pdf_path) as pdf:
                for page in pdf.pages:
                    text += page.extract_text()
            return text
        except Exception as e:
            logging.info(f"Error reading PDF file: {e}")
            return ""

    @staticmethod
    def read_docx(file_path: str) -> str:
        """
        Extracts text content from a DOCX file using python-docx library. Processes all paragraphs
        sequentially and joins them with newline characters. Handles potential file reading errors
        gracefully by returning an empty string and logging the error.

        Args:
            file_path (str): Path to the DOCX file.

        Returns:
            str: Text extracted from the DOCX file.
        """
        try:
            doc = Document(file_path)
            full_text = []
            for paragraph in doc.paragraphs:
                full_text.append(paragraph.text)
            return "\n".join(full_text)
        except Exception as e:
            logging.info(f"Error reading DOCX file: {e}")
            return ""

    @staticmethod
    def read_txt_md(file_path: str) -> str:
        """
        Read a TXT or MD file and extract its text content.

        Args:
            file_path (str): Path to the TXT or MD file.

        Returns:
            str: Text extracted from the TXT or MD file.
        """
        try:
            with open(file_path, "r", encoding="utf-8") as f:
                return f.read()
        except Exception as e:
            logging.info(f"Error reading TXT or MD file: {e}")
            return ""

    @staticmethod
    async def get_complete_search_content(
        ref_file_num: int,
        search_results: list,
        max_crawler_threads,
        bot_client: BotClient,
        max_search_results_char,
    ) -> str:
        """
        Combines and formats multiple search results into a single string.
        Processes each result, extracts URLs, crawls content, and enforces length limits.

        Args:
            ref_file_num (int): Reference file number
            search_results (list): List of search results
            max_crawler_threads (int): Maximum number of concurrent crawler threads
            bot_client (BotClient): Chatbot client instance
            max_search_results_char (int): Maximum character length of each search result

        Returns:
            str: Complete search content string
        """
        results = []
        crawl_utils = CrawlUtils()

        items_to_crawl = []
        for search_res in search_results:
            for item in search_res:
                items_to_crawl.append(item)

        # Create a semaphore to limit concurrent crawls
        semaphore = asyncio.Semaphore(max_crawler_threads)

        async def crawl_with_semaphore(url):
            async with semaphore:
                return await crawl_utils.get_webpage_text(url)

        # Crawl all webpages with limited concurrency
        crawl_tasks = [crawl_with_semaphore(item["url"]) for item in items_to_crawl]
        crawled_contents = await asyncio.gather(*crawl_tasks, return_exceptions=True)

        # Process crawled contents
        for item, new_content in zip(items_to_crawl, crawled_contents):
            if not new_content or isinstance(new_content, Exception):
                continue

            item_text = "Title: {title} \nURL: {url} \nContent:\n{content}\n".format(
                title=item["title"], url=item["url"], content=new_content
            )

            # Truncate the search result to max_search_results_char characters
            search_res_words = bot_client.cut_chinese_english(item_text)
            res_words = bot_client.cut_chinese_english("".join(results))
            if len(res_words) >= max_search_results_char:
                break
            elif len(search_res_words) + len(res_words) > max_search_results_char:
                max_char = max_search_results_char - len(res_words)
                print(f"max_char: {max_char}\n")
                search_res_words = search_res_words[:max_char]
                item_text = "".join(search_res_words)

            results.append(
                f"\n参考资料[{len(results) + 1 + ref_file_num}]:\n"
                + f"资料来源:素材检索\n{item_text}\n"
            )

        return "".join(results)


def launch_demo(args: argparse.Namespace, bot_client: BotClient):
    """
    Launch demo program
    Args:
        args (argparse.Namespace): argparse Namespace object containing parsed command line arguments
        bot_client (BotClient): Bot client instance
    """
    css = """
    .input-textbox textarea {
        height: 200px !important;
    }
    #file-upload {
        height: 247px !important;
        min-height: 247px !important;
        max-height: 247px !important;
    }
    /* Hide original Chinese text */
    #file-upload .wrap {
        font-size: 0 !important;
        position: relative;
        display: flex;
        flex-direction: column;
        align-items: center;
        justify-content: center;
    }

    /* Insert English prompt text below the SVG icon */
    #file-upload .wrap::after {
        content: "Drag and drop files here or click to upload";
        font-size: 18px;
        color: #555;
        margin-top: 8px;
        white-space: nowrap;
    }
    """

    with gr.Blocks(css=css) as demo:
        logo_url = GradioEvents.get_image_url("assets/logo.png")
        gr.Markdown(
            f"""\
                <p align="center"><img src="{logo_url}" \
                style="height: 60px"/><p>"""
        )
        gr.Markdown(
            """\
<center><font size=3>This demo is based on ERNIE models. \
(本演示基于文心大模型实现。)</center>"""
        )
        gr.Markdown(
            """\
<center><font size=3>    <a href="https://ernie.baidu.com/">ERNIE Bot</a> | \
<a href="https://github.com/PaddlePaddle/ERNIE">GitHub</a> | \
<a href="https://huggingface.co/baidu">Hugging Face</a> | \
<a href="https://aistudio.baidu.com/modelsoverview">BAIDU AI Studio</a> | \
<a href="https://yiyan.baidu.com/blog/publication/">Technical Report</a></center>"""
        )

        chatbot = gr.Chatbot(
            label="ERNIE", elem_classes="control-height", type="messages"
        )

        search_result = gr.Textbox(
            label="Search Result", lines=10, max_lines=10, visible=False
        )

        with gr.Row():
            search_check = gr.Checkbox(label="🌐 Search the web(联网搜索)")

        with gr.Row():
            query = gr.Textbox(
                label="Input", lines=1, scale=6, elem_classes="input-textbox"
            )
            file_btn = gr.File(
                label="File upload (Accepted formats: PNG, JPEG, JPG, PDF, TXT, MD, DOC, DOCX)",
                scale=4,
                elem_id="file-upload",
                file_types=IMAGE_FILE_TYPE + TEXT_FILE_TYPE,
                file_count="multiple",
            )

        with gr.Row():
            empty_btn = gr.Button("🧹 Clear History(清除历史)")
            submit_btn = gr.Button("🚀 Submit(发送)")
            regen_btn = gr.Button("🤔️ Regenerate(重试)")

        task_history = gr.State([])
        image_history = gr.State({})
        file_history = gr.State({})
        model_name = gr.State(next(iter(args.model_map.keys())))
        max_crawler_threads = gr.State(args.max_crawler_threads)

        search_check.change(
            fn=GradioEvents.search_toggle_state,
            inputs=search_check,
            outputs=search_result,
        )

        predict_with_clients = partial(GradioEvents.predict, bot_client=bot_client)
        regenerate_with_clients = partial(
            GradioEvents.regenerate, bot_client=bot_client
        )
        query.submit(
            predict_with_clients,
            inputs=[
                query,
                chatbot,
                task_history,
                image_history,
                file_history,
                model_name,
                file_btn,
                search_check,
                max_crawler_threads,
            ],
            outputs=[chatbot, search_result],
            show_progress=True,
        )
        query.submit(GradioEvents.reset_user_input, [], [query])
        submit_btn.click(
            predict_with_clients,
            inputs=[
                query,
                chatbot,
                task_history,
                image_history,
                file_history,
                model_name,
                file_btn,
                search_check,
                max_crawler_threads,
            ],
            outputs=[chatbot, search_result],
            show_progress=True,
        )
        submit_btn.click(GradioEvents.reset_user_input, [], [query])
        empty_btn.click(
            GradioEvents.reset_state,
            outputs=[
                chatbot,
                task_history,
                image_history,
                file_history,
                file_btn,
                search_result,
            ],
            show_progress=True,
        )
        regen_btn.click(
            regenerate_with_clients,
            inputs=[
                chatbot,
                task_history,
                image_history,
                file_history,
                model_name,
                file_btn,
                search_check,
                max_crawler_threads,
            ],
            outputs=[chatbot, search_result],
            show_progress=True,
        )

    demo.queue(
        default_concurrency_limit=args.concurrency_limit, max_size=args.max_queue_size
    )
    demo.launch(server_port=args.server_port, server_name=args.server_name)


def main():
    """Main function that runs when this script is executed."""
    args = get_args()
    bot_client = BotClient(args)
    launch_demo(args, bot_client)


if __name__ == "__main__":
    main()