bahakizil's picture
Upload 3 files
3e49534 verified
import gradio as gr
import torch
import numpy as np
import cv2
import os
import tempfile
from pathlib import Path
from ultralytics import YOLO
# Load the YOLO model
model_path = Path(__file__).parent / "best.pt"
model = YOLO(model_path)
def process_video(video_path):
"""
Process a video with the YOLO model and return the processed video path
"""
if not video_path:
return None
# Create temporary file for output
temp_output_path = tempfile.NamedTemporaryFile(suffix='.mp4', delete=False).name
# Process video with YOLO
cap = cv2.VideoCapture(video_path)
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
fps = int(cap.get(cv2.CAP_PROP_FPS))
# Define codec and create VideoWriter object
output = cv2.VideoWriter(
temp_output_path,
cv2.VideoWriter_fourcc(*'mp4v'),
fps,
(width, height)
)
# Process each frame
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
# Run YOLOv8 inference on the frame
results = model(frame)
# Visualize the results on the frame
annotated_frame = results[0].plot()
# Write the frame to the output video
output.write(annotated_frame)
# Release resources
cap.release()
output.release()
return temp_output_path
# Create the Gradio interface
with gr.Blocks() as app:
gr.Markdown("# Vehicle Detection with YOLOv12")
gr.Markdown("Upload a video and click 'Submit' to detect vehicles using a fine-tuned YOLOv12 model.")
with gr.Row():
input_video = gr.Video(label="Upload Video")
output_video = gr.Video(label="Processed Video")
submit_btn = gr.Button("Submit")
submit_btn.click(
fn=process_video,
inputs=[input_video],
outputs=[output_video]
)
if __name__ == "__main__":
app.launch()