badrex's picture
Update app.py with Arabic dialect names in Arabci script
7be8c29 verified
raw
history blame
5.4 kB
import gradio as gr
from transformers import pipeline
import os
import numpy as np
import torch
# Load the model
print("Loading model...")
model_id = "badrex/mms-300m-arabic-dialect-identifier"
classifier = pipeline("audio-classification", model=model_id)
print("Model loaded successfully")
# Define dialect mapping
dialect_mapping = {
"MSA": "Modern Standard Arabic(MSA) - العربية الفصحى الحديثة",
"Egyptian": "Egyptian Arabic - اللهجة المصرية العامية",
"Gulf": "Gulf Arabic - لهجة الجزيرة العربية",
"Levantine": "Levantine Arabic - لهجة بلاد الشام",
"Maghrebi": "Maghrebi Arabic - اللهجة المغاربية"
}
def predict_dialect(audio):
if audio is None:
return {"Error": 1.0}
# The audio input from Gradio is a tuple of (sample_rate, audio_array)
sr, audio_array = audio
# Process the audio input
if len(audio_array.shape) > 1:
audio_array = audio_array.mean(axis=1) # Convert stereo to mono
# Convert audio to float32 if it's not already (fix for Chrome recording issue)
if audio_array.dtype != np.float32:
# Normalize to [-1, 1] range as expected by the model
if audio_array.dtype == np.int16:
audio_array = audio_array.astype(np.float32) / 32768.0
else:
audio_array = audio_array.astype(np.float32)
print(f"Processing audio: sample rate={sr}, shape={audio_array.shape}")
# Classify the dialect
predictions = classifier({"sampling_rate": sr, "raw": audio_array})
# Format results for display
results = {}
for pred in predictions:
dialect_name = dialect_mapping.get(pred['label'], pred['label'])
results[dialect_name] = float(pred['score'])
return results
# Manually prepare example file paths without metadata
examples = []
examples_dir = "examples"
if os.path.exists(examples_dir):
for filename in os.listdir(examples_dir):
if filename.endswith((".wav", ".mp3", ".ogg")):
examples.append([os.path.join(examples_dir, filename)])
print(f"Found {len(examples)} example files")
else:
print("Examples directory not found")
# Custom CSS for better styling
custom_css = """
<style>
.centered-content {
text-align: center;
max-width: 800px;
margin: 0 auto;
padding: 20px;
}
.logo-image {
width: 200px;
height: auto;
margin: 20px auto;
display: block;
}
.description-text {
font-size: 16px;
line-height: 1.6;
margin-bottom: 20px;
}
.dialect-list {
font-size: 15px;
line-height: 1.8;
text-align: left;
max-width: 600px;
margin: 0 auto;
}
.highlight-text {
font-size: 16px;
color: #2563eb;
margin: 20px 0;
}
.footer-text {
font-size: 13px;
color: #6b7280;
margin-top: 20px;
}
</style>
"""
"""
<p style="font-size: 15px; line-height: 1.8;">
<strong>The following Arabic language varieties are supported:</strong>
<br><br>
✦ <strong>Modern Standard Arabic (MSA)</strong> - The formal language of media and education
<br>
✦ <strong>Egyptian Arabic</strong> - The dialect of Cairo, Alexandria, and popular Arabic cinema
<br>
✦ <strong>Gulf Arabic</strong> - Spoken across Saudi Arabia, UAE, Kuwait, Qatar, Bahrain, and Oman
<br>
✦ <strong>Levantine Arabic</strong> - The dialect of Syria, Lebanon, Jordan, and Palestine
<br>
✦ <strong>Maghrebi Arabic</strong> - The distinctive varieties of Morocco, Algeria, Tunisia, and Libya
</p>
<br>
"""
# Create the Gradio interface
demo = gr.Interface(
fn=predict_dialect,
inputs=gr.Audio(),
outputs=gr.Label(num_top_classes=5, label="Predicted Dialect"),
title="Tamyïz 🍉 Arabic Dialect Identification in Speech",
description="""
<div class="centered-content">
<div>
<p>
By <a href="https://badrex.github.io/" style="color: #2563eb;">Badr Alabsi</a> with ❤️🤍💚
</p>
<br>
<p style="font-size: 15px; line-height: 1.8;">
This is a demo for the accurate and robust Transformer-based <a href="https://huggingface.co/badrex/mms-300m-arabic-dialect-identifier" style="color: #FF5349;">model</a> for Spoken Arabic Dialect Identification (ADI).
From just a short audio clip (5-10 seconds), the model can identify Modern Standard Arabic (<strong>MSA</strong>) as well as four major regional Arabic varieties: <strong>Egyptian</strong> Arabic, <strong>Gulf</strong> Arabic, <strong>Levantine</strong> Arabic, and <strong>Maghrebi</strong> Arabic.
<br>
<p style="font-size: 15px; line-height: 1.8;">
Simply <strong>upload an audio file</strong> 📤 or <strong>record yourself speaking</strong> 🎙️⏺️ to try out the model!
</p>
</div>
</div>
""",
examples=examples if examples else None,
cache_examples=False, # Disable caching to avoid issues
flagging_mode=None
)
# Launch the app
demo.launch(share=True)