Spaces:
				
			
			
	
			
			
		Paused
		
	
	
	
			
			
	
	
	
	
		
		
		Paused
		
	| import random | |
| import torch | |
| import torch.nn as nn | |
| import torchaudio | |
| from models.CLAP.open_clip import create_model | |
| from models.CLAP.training.data import get_audio_features | |
| from transformers import RobertaTokenizer | |
| from utils import ignore_warnings; ignore_warnings() | |
| class CLAP_Encoder(nn.Module): | |
| def __init__( | |
| self, | |
| pretrained_path='checkpoint/music_speech_audioset_epoch_15_esc_89.98.pt', | |
| sampling_rate=32000, | |
| amodel = "HTSAT-base", | |
| ): | |
| super().__init__() | |
| self.device = "cpu" | |
| self.precision = "fp32" | |
| self.amodel = amodel # or 'PANN-14' | |
| self.tmodel = "roberta" # the best text encoder in our training | |
| self.enable_fusion = False # False if you do not want to use the fusion model | |
| self.fusion_type = "aff_2d" | |
| self.pretrained = pretrained_path | |
| self.sampling_rate = sampling_rate | |
| self.tokenize = RobertaTokenizer.from_pretrained("roberta-base") | |
| self.model, self.model_cfg = create_model( | |
| self.amodel, | |
| self.tmodel, | |
| self.pretrained, | |
| precision=self.precision, | |
| device=self.device, | |
| enable_fusion=self.enable_fusion, | |
| fusion_type=self.fusion_type, | |
| ) | |
| for p in self.model.parameters(): | |
| p.requires_grad = False | |
| self.model.eval() | |
| self.encoder_type = 'CLAP' | |
| def batch_to_list(self, batch): | |
| ret = [] | |
| for i in range(batch.size(0)): | |
| ret.append(batch[i]) | |
| return ret | |
| def _get_audio_embed(self, batch): | |
| # batch: [B, samples] | |
| with torch.no_grad(): | |
| audio_dict_list = [] | |
| assert ( | |
| self.sampling_rate == 32000 | |
| ), "We only support 32000 sampling rate" | |
| # batch: [bs, 1, t-samples] | |
| batch = torchaudio.functional.resample( | |
| batch, orig_freq=self.sampling_rate, new_freq=48000 | |
| ) | |
| for waveform in self.batch_to_list(batch): | |
| audio_dict = {} | |
| audio_dict = get_audio_features( | |
| audio_dict, | |
| waveform, | |
| 480000, | |
| data_truncating="fusion", | |
| data_filling="repeatpad", | |
| audio_cfg=self.model_cfg["audio_cfg"], | |
| ) | |
| audio_dict_list.append(audio_dict) | |
| # [bs, 512] | |
| embed = self.model.get_audio_embedding(audio_dict_list) | |
| return embed.detach() | |
| def _get_text_embed(self, batch): | |
| double_batch = False | |
| if len(batch) == 1: | |
| batch = batch * 2 | |
| double_batch = True | |
| with torch.no_grad(): | |
| # the 'fusion' truncate mode can be changed to 'rand_trunc' if run in unfusion mode | |
| text_data = self.tokenizer(batch) | |
| embed = self.model.get_text_embedding(text_data) | |
| if double_batch: | |
| embed = embed[0].unsqueeze(0) | |
| return embed.detach() | |
| def get_query_embed(self, modality, audio=None, text=None, use_text_ratio=0.5, device=None): | |
| if modality == 'audio': | |
| embed = self._get_audio_embed(audio) | |
| elif modality == 'text': | |
| embed = self._get_text_embed(text) | |
| elif modality == 'hybird': | |
| if random.random() > use_text_ratio: | |
| embed = self._get_audio_embed(audio) | |
| else: | |
| embed = self._get_text_embed(text) | |
| else: | |
| raise NotImplementedError("Please check flag 'training_modality'.") | |
| return embed.float() | |
| def tokenizer(self, text): | |
| result = self.tokenize( | |
| text, | |
| padding="max_length", | |
| truncation=True, | |
| max_length=512, | |
| return_tensors="pt", | |
| ) | |
| return {k: v.squeeze(0) for k, v in result.items()} | |
