|
import os |
|
import base64 |
|
from io import BytesIO |
|
from PIL import Image |
|
import streamlit as st |
|
from app_config import SYSTEM_PROMPT,MODEL,MAX_TOKENS,TRANSFORMER_MODEL |
|
from langchain.memory import ConversationSummaryBufferMemory |
|
from langchain_community.embeddings import HuggingFaceEmbeddings |
|
from langchain_google_genai import ChatGoogleGenerativeAI |
|
from langchain_groq import ChatGroq |
|
from streamlit_pdf_viewer import pdf_viewer |
|
from pydantic import BaseModel |
|
from langchain.chains import LLMChain |
|
from langchain.prompts import ChatPromptTemplate |
|
from langchain_community.vectorstores import FAISS |
|
from sentence_transformers import SentenceTransformer |
|
from typing import Any |
|
|
|
st.title("Hitachi Support Bot") |
|
|
|
class Element(BaseModel): |
|
type: str |
|
text: Any |
|
|
|
|
|
|
|
|
|
|
|
llm = ChatGroq(model=MODEL,api_key=os.getenv('API_KEY')) |
|
|
|
|
|
|
|
prompt = ChatPromptTemplate.from_template(SYSTEM_PROMPT) |
|
qa_chain = LLMChain(llm=llm,prompt=prompt) |
|
embeddings = HuggingFaceEmbeddings(model_name=TRANSFORMER_MODEL) |
|
db = FAISS.load_local("faiss_index",embeddings,allow_dangerous_deserialization=True) |
|
|
|
st.markdown( |
|
""" |
|
<style> |
|
.st-emotion-cache-janbn0 { |
|
flex-direction: row-reverse; |
|
text-align: right; |
|
} |
|
</style> |
|
""", |
|
unsafe_allow_html=True, |
|
) |
|
|
|
def response_generator(question): |
|
relevant_docs = db.similarity_search_with_relevance_scores(question,k=5) |
|
context = "" |
|
relevant_images = [] |
|
for d,score in relevant_docs: |
|
if score > 0: |
|
if d.metadata['type'] == 'text': |
|
context += str(d.metadata['original_content']) |
|
elif d.metadata['type'] == 'table': |
|
context += str(d.metadata['original_content']) |
|
elif d.metadata['type'] == 'image': |
|
context += d.page_content |
|
relevant_images.append(d.metadata['original_content']) |
|
result = qa_chain.run({'context':context,"question":question}) |
|
return result,relevant_images |
|
|
|
with st.sidebar: |
|
st.header("Hitachi Support Bot") |
|
button = st.toggle("View Doc file.") |
|
|
|
if button: |
|
pdf_viewer("GPT OUTPUT.pdf") |
|
else: |
|
if "messages" not in st.session_state: |
|
st.session_state.messages=[{"role": "system", "content": SYSTEM_PROMPT}] |
|
|
|
if "llm" not in st.session_state: |
|
st.session_state.llm = llm |
|
if "rag_memory" not in st.session_state: |
|
st.session_state.rag_memory = ConversationSummaryBufferMemory(llm=st.session_state.llm, max_token_limit= 5000) |
|
|
|
container = st.container(height=700) |
|
for message in st.session_state.messages: |
|
if message["role"] != "system": |
|
if message["role"] == "user": |
|
with container.chat_message(message["role"]): |
|
st.write(message["content"]) |
|
if message["role"] == "assistant": |
|
with container.chat_message(message["role"]): |
|
st.write(message["content"]) |
|
for i in range(len(message["images"])): |
|
st.image(Image.open(BytesIO(base64.b64decode(message["images"][i].encode('utf-8'))))) |
|
|
|
if prompt := st.chat_input("Enter your query here... "): |
|
with container.chat_message("user"): |
|
st.write(prompt) |
|
st.session_state.messages.append({"role":"user" , "content":prompt}) |
|
with container.chat_message("assistant"): |
|
response,images = response_generator(prompt) |
|
st.write(response) |
|
for i in range(len(images)): |
|
st.markdown("""---""") |
|
st.image(Image.open(BytesIO(base64.b64decode(images[i].encode('utf-8'))))) |
|
st.markdown("""---""") |
|
|
|
|
|
st.session_state.rag_memory.save_context({'input': prompt}, {'output': response}) |
|
st.session_state.messages.append({"role":"assistant" , "content":response,'images':images}) |