Spaces:
Running
on
Zero
Running
on
Zero
import dotenv | |
dotenv.load_dotenv(override=True) | |
import subprocess | |
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True) | |
import spaces | |
import gradio as gr | |
import os | |
import argparse | |
import random | |
from datetime import datetime | |
import torch | |
from torchvision.transforms.functional import to_pil_image, to_tensor | |
from accelerate import Accelerator | |
from omnigen2.pipelines.omnigen2.pipeline_omnigen2 import OmniGen2Pipeline | |
from omnigen2.utils.img_util import create_collage | |
from omnigen2.schedulers.scheduling_flow_match_euler_discrete import FlowMatchEulerDiscreteScheduler | |
from omnigen2.schedulers.scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler | |
NEGATIVE_PROMPT = "(((deformed))), blurry, over saturation, bad anatomy, disfigured, poorly drawn face, mutation, mutated, (extra_limb), (ugly), (poorly drawn hands), fused fingers, messy drawing, broken legs censor, censored, censor_bar" | |
ROOT_DIR = os.path.dirname(os.path.abspath(__file__)) | |
pipeline = None | |
accelerator = None | |
save_images = False | |
def load_pipeline(accelerator, weight_dtype, args): | |
pipeline = OmniGen2Pipeline.from_pretrained( | |
args.model_path, | |
torch_dtype=weight_dtype, | |
trust_remote_code=True, | |
) | |
if args.enable_sequential_cpu_offload: | |
pipeline.enable_sequential_cpu_offload() | |
elif args.enable_model_cpu_offload: | |
pipeline.enable_model_cpu_offload() | |
else: | |
pipeline = pipeline.to(accelerator.device) | |
return pipeline | |
def run( | |
instruction, | |
width_input, | |
height_input, | |
scheduler, | |
num_inference_steps, | |
image_input_1, | |
image_input_2, | |
image_input_3, | |
negative_prompt, | |
guidance_scale_input, | |
img_guidance_scale_input, | |
cfg_range_start, | |
cfg_range_end, | |
num_images_per_prompt, | |
max_input_image_side_length, | |
max_pixels, | |
seed_input, | |
progress=gr.Progress(), | |
): | |
input_images = [image_input_1, image_input_2, image_input_3] | |
input_images = [img for img in input_images if img is not None] | |
if len(input_images) == 0: | |
input_images = None | |
if seed_input == -1: | |
seed_input = random.randint(0, 2**16 - 1) | |
generator = torch.Generator(device=accelerator.device).manual_seed(seed_input) | |
def progress_callback(cur_step, timesteps): | |
frac = (cur_step + 1) / float(timesteps) | |
progress(frac) | |
if scheduler == 'euler': | |
pipeline.scheduler = FlowMatchEulerDiscreteScheduler() | |
elif scheduler == 'dpmsolver': | |
pipeline.scheduler = DPMSolverMultistepScheduler( | |
algorithm_type="dpmsolver++", | |
solver_type="midpoint", | |
solver_order=2, | |
prediction_type="flow_prediction", | |
) | |
results = pipeline( | |
prompt=instruction, | |
input_images=input_images, | |
width=width_input, | |
height=height_input, | |
max_input_image_side_length=max_input_image_side_length, | |
max_pixels=max_pixels, | |
num_inference_steps=num_inference_steps, | |
max_sequence_length=1024, | |
text_guidance_scale=guidance_scale_input, | |
image_guidance_scale=img_guidance_scale_input, | |
cfg_range=(cfg_range_start, cfg_range_end), | |
negative_prompt=negative_prompt, | |
num_images_per_prompt=num_images_per_prompt, | |
generator=generator, | |
output_type="pil", | |
step_func=progress_callback, | |
) | |
progress(1.0) | |
vis_images = [to_tensor(image) * 2 - 1 for image in results.images] | |
output_image = create_collage(vis_images) | |
if save_images: | |
# Create outputs directory if it doesn't exist | |
output_dir = os.path.join(ROOT_DIR, "outputs_gradio") | |
os.makedirs(output_dir, exist_ok=True) | |
# Generate unique filename with timestamp | |
timestamp = datetime.now().strftime("%Y_%m_%d-%H_%M_%S") | |
# Generate unique filename with timestamp | |
output_path = os.path.join(output_dir, f"{timestamp}.png") | |
# Save the image | |
output_image.save(output_path) | |
# Save All Generated Images | |
if len(results.images) > 1: | |
for i, image in enumerate(results.images): | |
image_name, ext = os.path.splitext(output_path) | |
image.save(f"{image_name}_{i}{ext}") | |
return output_image | |
def get_example(): | |
cases = [ | |
[ | |
"The sun rises slightly, the dew on the rose petals in the garden is clear, a crystal ladybug is crawling to the dew, the background is the early morning garden, macro lens.", | |
1024, | |
1024, | |
"euler", | |
50, | |
None, | |
None, | |
None, | |
NEGATIVE_PROMPT, | |
3.5, | |
1.0, | |
0.0, | |
1.0, | |
1, | |
2048, | |
1024 * 1024, | |
0, | |
], | |
[ | |
"A snow maiden with pale translucent skin, frosty white lashes, and a soft expression of longing", | |
1024, | |
1024, | |
"euler", | |
50, | |
None, | |
None, | |
None, | |
NEGATIVE_PROMPT, | |
3.5, | |
1.0, | |
0.0, | |
1.0, | |
1, | |
2048, | |
1024 * 1024, | |
0, | |
], | |
[ | |
"Add a fisherman hat to the woman's head", | |
1024, | |
1024, | |
"euler", | |
50, | |
os.path.join(ROOT_DIR, "example_images/flux5.png"), | |
None, | |
None, | |
NEGATIVE_PROMPT, | |
5.0, | |
2.0, | |
0.0, | |
1.0, | |
1, | |
2048, | |
1024 * 1024, | |
0, | |
], | |
[ | |
"replace the sword with a hammer.", | |
1024, | |
1024, | |
"euler", | |
50, | |
os.path.join( | |
ROOT_DIR, | |
"example_images/d8f8f44c64106e7715c61b5dfa9d9ca0974314c5d4a4a50418acf7ff373432bb.png", | |
), | |
None, | |
None, | |
NEGATIVE_PROMPT, | |
5.0, | |
2.0, | |
0.0, | |
1.0, | |
1, | |
2048, | |
1024 * 1024, | |
0, | |
], | |
[ | |
"Extract the character from the picture and fill the rest of the background with white.", | |
# "Transform the sculpture into jade", | |
1024, | |
1024, | |
"euler", | |
50, | |
os.path.join( | |
ROOT_DIR, "example_images/46e79704-c88e-4e68-97b4-b4c40cd29826.png" | |
), | |
None, | |
None, | |
NEGATIVE_PROMPT, | |
5.0, | |
2.0, | |
0.0, | |
1.0, | |
1, | |
2048, | |
1024 * 1024, | |
0, | |
], | |
[ | |
"Make he smile", | |
1024, | |
1024, | |
"euler", | |
50, | |
os.path.join( | |
ROOT_DIR, "example_images/vicky-hladynets-C8Ta0gwPbQg-unsplash.jpg" | |
), | |
None, | |
None, | |
NEGATIVE_PROMPT, | |
5.0, | |
2.0, | |
0.0, | |
1.0, | |
1, | |
2048, | |
1024 * 1024, | |
0, | |
], | |
[ | |
"Change the background to classroom", | |
1024, | |
1024, | |
"euler", | |
50, | |
os.path.join(ROOT_DIR, "example_images/ComfyUI_temp_mllvz_00071_.png"), | |
None, | |
None, | |
NEGATIVE_PROMPT, | |
5.0, | |
2.0, | |
0.0, | |
1.0, | |
1, | |
2048, | |
1024 * 1024, | |
0, | |
], | |
[ | |
"Raise his hand", | |
1024, | |
1024, | |
"euler", | |
50, | |
os.path.join( | |
ROOT_DIR, | |
"example_images/289089159-a6d7abc142419e63cab0a566eb38e0fb6acb217b340f054c6172139b316f6596.png", | |
), | |
None, | |
None, | |
NEGATIVE_PROMPT, | |
5.0, | |
2.0, | |
0.0, | |
1.0, | |
1, | |
2048, | |
1024 * 1024, | |
0, | |
], | |
[ | |
"Generate a photo of an anime-style figurine placed on a desk. The figurine model should be based on the character photo provided in the attachment, accurately replicating the full-body pose, facial expression, and clothing style of the character in the photo, ensuring the entire figurine is fully presented. The overall design should be exquisite and detailed, soft gradient colors and a delicate texture, leaning towards a Japanese anime style, rich in details, with a realistic quality and beautiful visual appeal.", | |
1024, | |
1024, | |
"euler", | |
50, | |
os.path.join(ROOT_DIR, "example_images/RAL_0315.JPG"), | |
None, | |
None, | |
NEGATIVE_PROMPT, | |
5.0, | |
2.0, | |
0.0, | |
1.0, | |
1, | |
2048, | |
1024 * 1024, | |
0, | |
], | |
[ | |
"Change the dress to blue.", | |
1024, | |
1024, | |
"euler", | |
50, | |
os.path.join(ROOT_DIR, "example_images/1.png"), | |
None, | |
None, | |
NEGATIVE_PROMPT, | |
5.0, | |
2.0, | |
0.0, | |
1.0, | |
1, | |
2048, | |
1024 * 1024, | |
0, | |
], | |
[ | |
"Remove the cat", | |
1024, | |
1024, | |
"euler", | |
50, | |
os.path.join( | |
ROOT_DIR, | |
"example_images/386724677-589d19050d4ea0603aee6831459aede29a24f4d8668c62c049f413db31508a54.png", | |
), | |
None, | |
None, | |
NEGATIVE_PROMPT, | |
5.0, | |
2.0, | |
0.0, | |
1.0, | |
1, | |
2048, | |
1024 * 1024, | |
0, | |
], | |
[ | |
"In a cozy café, the anime figure is sitting in front of a laptop, smiling confidently.", | |
1024, | |
1024, | |
"euler", | |
50, | |
os.path.join(ROOT_DIR, "example_images/ComfyUI_00254_.png"), | |
None, | |
None, | |
NEGATIVE_PROMPT, | |
5.0, | |
2.0, | |
0.0, | |
1.0, | |
1, | |
2048, | |
1024 * 1024, | |
0, | |
], | |
[ | |
"Convert this image into Ghibli style", | |
1024, | |
1024, | |
"euler", | |
50, | |
os.path.join(ROOT_DIR, "example_images/girl.png"), | |
None, | |
None, | |
NEGATIVE_PROMPT, | |
5.0, | |
2.0, | |
0.0, | |
1.0, | |
1, | |
2048, | |
1024 * 1024, | |
0, | |
], | |
[ | |
"Convert this image to clay style", | |
1024, | |
1024, | |
"euler", | |
50, | |
os.path.join(ROOT_DIR, "example_images/girl.png"), | |
None, | |
None, | |
NEGATIVE_PROMPT, | |
5.0, | |
2.0, | |
0.0, | |
1.0, | |
1, | |
2048, | |
1024 * 1024, | |
0, | |
], | |
[ | |
"Generate an ad for this object. Add this product into a minimalist interior inspired by japanese aesthetic. The picture should have the product front and center, placed on a minimalist shelf with a concrete wall behind it. Add plants and other stylish accessories to make it feel like a photo of a home. ", | |
1024, | |
1024, | |
"euler", | |
50, | |
os.path.join(ROOT_DIR, "example_images/nezha.png"), | |
None, | |
None, | |
NEGATIVE_PROMPT, | |
5.0, | |
2.0, | |
0.0, | |
1.0, | |
1, | |
2048, | |
1024 * 1024, | |
0, | |
], | |
[ | |
"Generate an ad for this object. Add this product into a minimalist interior inspired by japanese aesthetic. The picture should have the product front and center, placed on a minimalist shelf with a concrete wall behind it. Add plants and other stylish accessories to make it feel like a photo of a home. ", | |
1024, | |
1024, | |
"euler", | |
50, | |
os.path.join(ROOT_DIR, "example_images/blv.png"), | |
None, | |
None, | |
NEGATIVE_PROMPT, | |
5.0, | |
2.0, | |
0.0, | |
1.0, | |
1, | |
2048, | |
1024 * 1024, | |
0, | |
], | |
[ | |
"It is placed on a figure display shelf inside a well-lit glass cabinet. Soft LED lights highlight its intricate details, and the shelf stands against a clean white wall, giving the collection a modern, curated look.", | |
1024, | |
1024, | |
"euler", | |
50, | |
os.path.join(ROOT_DIR, "example_images/toy.png"), | |
None, | |
None, | |
NEGATIVE_PROMPT, | |
5.0, | |
2.0, | |
0.0, | |
1.0, | |
1, | |
2048, | |
1024 * 1024, | |
0, | |
], | |
[ | |
"It is placed on a figure display shelf inside a well-lit glass cabinet. Soft LED lights highlight its intricate details, and the shelf stands against a clean white wall, giving the collection a modern, curated look.", | |
1024, | |
1024, | |
"euler", | |
50, | |
os.path.join(ROOT_DIR, "example_images/doll1.jpg"), | |
None, | |
None, | |
NEGATIVE_PROMPT, | |
5.0, | |
2.0, | |
0.0, | |
1.0, | |
1, | |
2048, | |
1024 * 1024, | |
0, | |
], | |
[ | |
"The doll is part of a stop-motion film set, surrounded by camera gear and miniature lighting rigs.", | |
1024, | |
1024, | |
"euler", | |
50, | |
os.path.join(ROOT_DIR, "example_images/doll1.jpg"), | |
None, | |
None, | |
NEGATIVE_PROMPT, | |
5.0, | |
2.0, | |
0.0, | |
1.0, | |
1, | |
2048, | |
1024 * 1024, | |
0, | |
], | |
[ | |
"The doll is part of a stop-motion film set, surrounded by camera gear and miniature lighting rigs.", | |
1024, | |
1024, | |
"euler", | |
50, | |
os.path.join(ROOT_DIR, "example_images/doll2.jpg"), | |
None, | |
None, | |
NEGATIVE_PROMPT, | |
5.0, | |
2.0, | |
0.0, | |
1.0, | |
1, | |
2048, | |
1024 * 1024, | |
0, | |
], | |
[ | |
"Edit the first image: add the man from the second image. The man is talking with a woman in the kitchen", | |
1024, | |
768, | |
"euler", | |
50, | |
os.path.join( | |
ROOT_DIR, | |
"example_images/woman_kitchen.webp", | |
), | |
os.path.join(ROOT_DIR, "example_images/a_man.webp"), | |
None, | |
NEGATIVE_PROMPT, | |
5.0, | |
2.0, | |
0.0, | |
1.0, | |
1, | |
2048, | |
1024 * 1024, | |
0, | |
], | |
[ | |
"Edit the first image: replace the woman with the person from the second image. The person is watching his phone in the kitchen", | |
1024, | |
768, | |
"euler", | |
50, | |
os.path.join( | |
ROOT_DIR, | |
"example_images/woman_kitchen.webp", | |
), | |
os.path.join(ROOT_DIR, "example_images/a_man.webp"), | |
None, | |
NEGATIVE_PROMPT, | |
5.0, | |
2.0, | |
0.0, | |
1.0, | |
1, | |
2048, | |
1024 * 1024, | |
0, | |
], | |
[ | |
"Edit the first image: replace the apple with the cat from the second image.", | |
1024, | |
768, | |
"euler", | |
50, | |
os.path.join(ROOT_DIR, "example_images/apple.png"), | |
os.path.join( | |
ROOT_DIR, | |
"example_images/468404374-d52ec1a44aa7e0dc9c2807ce09d303a111c78f34da3da2401b83ce10815ff872.png", | |
), | |
None, | |
NEGATIVE_PROMPT, | |
5.0, | |
2.0, | |
0.0, | |
1.0, | |
1, | |
2048, | |
1024 * 1024, | |
0, | |
], | |
[ | |
"She holds the sunflower close to her chest, eyes closed and smiling softly, standing on a sunlit balcony with the awakening city skyline behind her.", | |
1024, | |
1536, | |
"euler", | |
50, | |
os.path.join(ROOT_DIR, "example_images/woman1.webp"), | |
None, | |
None, | |
NEGATIVE_PROMPT, | |
5.0, | |
2.0, | |
0.0, | |
1.0, | |
1, | |
2048, | |
1024 * 1024, | |
0, | |
], | |
[ | |
"She does push-ups on the moonlit beach, staring intensely at the camera. Moonlight highlights her strong, focused expression, with waves crashing beside her on the glistening sand.", | |
1024, | |
1536, | |
"euler", | |
50, | |
os.path.join(ROOT_DIR, "example_images/woman1.webp"), | |
None, | |
None, | |
NEGATIVE_PROMPT, | |
5.0, | |
3.0, | |
0.0, | |
1.0, | |
1, | |
2048, | |
1024 * 1024, | |
0, | |
], | |
[ | |
"She is sitting on a motorcycle, framed by a daytime backdrop with swaying palm trees.", | |
1024, | |
1536, | |
"euler", | |
50, | |
os.path.join(ROOT_DIR, "example_images/woman1.webp"), | |
None, | |
None, | |
NEGATIVE_PROMPT, | |
5.0, | |
2.0, | |
0.0, | |
1.0, | |
1, | |
2048, | |
1024 * 1024, | |
0, | |
], | |
[ | |
"The two people shown in the images are sitting in a theater, watching the screen. One person points at the other person.", | |
1024, | |
1024, | |
"euler", | |
50, | |
os.path.join(ROOT_DIR, "example_images/man1.webp"), | |
os.path.join(ROOT_DIR, "example_images/woman1.webp"), | |
None, | |
NEGATIVE_PROMPT, | |
5.0, | |
3.0, | |
0.0, | |
1.0, | |
1, | |
2048, | |
1024 * 1024, | |
0, | |
], | |
[ | |
"The two people shown in the images are sitting in a theater, watching the screen. One person points at the other person.", | |
1024, | |
1024, | |
"euler", | |
50, | |
os.path.join(ROOT_DIR, "example_images/saml-altman-openai-ceo.webp"), | |
os.path.join(ROOT_DIR, "example_images/elon-twitter-new-ceo.webp"), | |
None, | |
NEGATIVE_PROMPT, | |
5.0, | |
3.0, | |
0.0, | |
1.0, | |
1, | |
2048, | |
1024 * 1024, | |
0, | |
], | |
[ | |
"The two people shown in the images are drinking wine, their eyes locked in an intense gaze at the camera, seated at an elegantly set table in a dimly lit room. Soft, golden light spills from a nearby chandelier, casting a warm glow over the polished wood surface, while the ambient sound of quiet conversation fills the air.", | |
1024, | |
1024, | |
"euler", | |
50, | |
os.path.join(ROOT_DIR, "example_images/man1.webp"), | |
os.path.join(ROOT_DIR, "example_images/woman1.webp"), | |
None, | |
NEGATIVE_PROMPT, | |
5.0, | |
3.0, | |
0.0, | |
1.0, | |
1, | |
2048, | |
1024 * 1024, | |
0, | |
], | |
[ | |
"The two people shown in the images are drinking wine, their eyes locked in an intense gaze at the camera, seated at an elegantly set table in a dimly lit room. Soft, golden light spills from a nearby chandelier, casting a warm glow over the polished wood surface, while the ambient sound of quiet conversation fills the air.", | |
1024, | |
1024, | |
"euler", | |
50, | |
os.path.join(ROOT_DIR, "example_images/saml-altman-openai-ceo.webp"), | |
os.path.join(ROOT_DIR, "example_images/elon-twitter-new-ceo.webp"), | |
None, | |
NEGATIVE_PROMPT, | |
5.0, | |
3.0, | |
0.0, | |
1.0, | |
1, | |
2048, | |
1024 * 1024, | |
0, | |
], | |
[ | |
"Create a wedding figure based on the girl in the first image and the man in the second image. Set the background as a wedding hall, with the man dressed in a suit and the girl in a white wedding dress. Ensure that the original faces remain unchanged and are accurately preserved. The man should adopt a realistic style, whereas the girl should maintain their classic anime style.", | |
1024, | |
1024, | |
"euler", | |
50, | |
os.path.join(ROOT_DIR, "example_images/1_20241127203215.png"), | |
os.path.join(ROOT_DIR, "example_images/000050281.jpg"), | |
None, | |
NEGATIVE_PROMPT, | |
5.0, | |
3.0, | |
0.0, | |
1.0, | |
1, | |
2048, | |
1024 * 1024, | |
0, | |
], | |
[ | |
"Let the girl and the boy get married in the church. ", | |
1024, | |
1024, | |
"euler", | |
50, | |
os.path.join(ROOT_DIR, "example_images/8FtFUxRzXqaguVRGzkHvN.png"), | |
os.path.join(ROOT_DIR, "example_images/01194-20240127001056_1024x1536.png"), | |
None, | |
NEGATIVE_PROMPT, | |
5.0, | |
3.0, | |
0.0, | |
1.0, | |
1, | |
2048, | |
1024 * 1024, | |
0, | |
], | |
[ | |
"Let the man from image1 and the woman from image2 kiss and hug", | |
1024, | |
1024, | |
"euler", | |
50, | |
os.path.join(ROOT_DIR, "example_images/1280X1280.png"), | |
os.path.join(ROOT_DIR, "example_images/000077066.jpg"), | |
None, | |
NEGATIVE_PROMPT, | |
5.0, | |
2.0, | |
0.0, | |
1.0, | |
1, | |
2048, | |
1024 * 1024, | |
0, | |
], | |
[ | |
"Please let the person in image 2 hold the toy from the first image in a parking lot.", | |
1024, | |
1024, | |
"euler", | |
50, | |
os.path.join(ROOT_DIR, "example_images/04.jpg"), | |
os.path.join(ROOT_DIR, "example_images/000365954.jpg"), | |
None, | |
NEGATIVE_PROMPT, | |
5.0, | |
2.0, | |
0.0, | |
1.0, | |
1, | |
2048, | |
1024 * 1024, | |
0, | |
], | |
[ | |
"Make the girl pray in the second image.", | |
1024, | |
682, | |
"euler", | |
50, | |
os.path.join(ROOT_DIR, "example_images/000440817.jpg"), | |
os.path.join(ROOT_DIR, "example_images/000119733.jpg"), | |
None, | |
NEGATIVE_PROMPT, | |
5.0, | |
2.0, | |
0.0, | |
1.0, | |
1, | |
2048, | |
1024 * 1024, | |
0, | |
], | |
[ | |
"The cat is sitting on the table. The bird is perching on the edge of the table.", | |
800, | |
512, | |
"euler", | |
50, | |
os.path.join( | |
ROOT_DIR, | |
"example_images/996e2cf6-daa5-48c4-9ad7-0719af640c17_1748848108409.png", | |
), | |
os.path.join( | |
ROOT_DIR, | |
"example_images/468404374-d52ec1a44aa7e0dc9c2807ce09d303a111c78f34da3da2401b83ce10815ff872.png", | |
), | |
os.path.join(ROOT_DIR, "example_images/00066-10350085.png"), | |
NEGATIVE_PROMPT, | |
5.0, | |
2.0, | |
0.0, | |
1.0, | |
1, | |
2048, | |
1024 * 1024, | |
0, | |
], | |
] | |
return cases | |
def run_for_examples( | |
instruction, | |
width_input, | |
height_input, | |
scheduler, | |
num_inference_steps, | |
image_input_1, | |
image_input_2, | |
image_input_3, | |
negative_prompt, | |
text_guidance_scale_input, | |
image_guidance_scale_input, | |
cfg_range_start, | |
cfg_range_end, | |
num_images_per_prompt, | |
max_input_image_side_length, | |
max_pixels, | |
seed_input, | |
): | |
return run( | |
instruction, | |
width_input, | |
height_input, | |
scheduler, | |
num_inference_steps, | |
image_input_1, | |
image_input_2, | |
image_input_3, | |
negative_prompt, | |
text_guidance_scale_input, | |
image_guidance_scale_input, | |
cfg_range_start, | |
cfg_range_end, | |
num_images_per_prompt, | |
max_input_image_side_length, | |
max_pixels, | |
seed_input, | |
) | |
description = """ | |
### 💡 Quick Tips for Best Results (see our [github](https://github.com/VectorSpaceLab/OmniGen2?tab=readme-ov-file#-usage-tips) for more details) | |
- Image Quality: Use high-resolution images (**at least 512x512 recommended**). | |
- Be Specific: Instead of "Add bird to desk", try "Add the bird from image 1 to the desk in image 2". | |
- Use English: English prompts currently yield better results. | |
- Increase image_guidance_scale for better consistency with the reference image: | |
- Image Editing: 1.3 - 2.0 | |
- In-context Generation: 2.0 - 3.0 | |
- For in-context edit (edit based multiple images), we recommend using the following prompt format: "Edit the first image: add/replace (the [object] with) the [object] from the second image. [descripton for your target image]." | |
For example: "Edit the first image: add the man from the second image. The man is talking with a woman in the kitchen" | |
Compared to OmniGen 1.0, although OmniGen2 has made some improvements, some issues still remain. It may take multiple attempts to achieve a satisfactory result. | |
""" | |
article = """ | |
```bibtex | |
@article{wu2025omnigen2, | |
title={OmniGen2: Exploration to Advanced Multimodal Generation}, | |
author={Chenyuan Wu and Pengfei Zheng and Ruiran Yan and Shitao Xiao and Xin Luo and Yueze Wang and Wanli Li and Xiyan Jiang and Yexin Liu and Junjie Zhou and Ze Liu and Ziyi Xia and Chaofan Li and Haoge Deng and Jiahao Wang and Kun Luo and Bo Zhang and Defu Lian and Xinlong Wang and Zhongyuan Wang and Tiejun Huang and Zheng Liu}, | |
journal={arXiv preprint arXiv:2506.18871}, | |
year={2025} | |
} | |
``` | |
""" | |
def main(args): | |
# Gradio | |
with gr.Blocks() as demo: | |
gr.Markdown( | |
"# OmniGen2: Exploration to Advanced Multimodal Generation [paper](https://arxiv.org/abs/2506.18871) [code](https://github.com/VectorSpaceLab/OmniGen2)" | |
) | |
gr.Markdown(description) | |
with gr.Row(): | |
with gr.Column(): | |
# text prompt | |
instruction = gr.Textbox( | |
label='Enter your prompt. Use "first/second image" or “第一张图/第二张图” as reference.', | |
placeholder="Type your prompt here...", | |
) | |
with gr.Row(equal_height=True): | |
# input images | |
image_input_1 = gr.Image(label="First Image", type="pil") | |
image_input_2 = gr.Image(label="Second Image", type="pil") | |
image_input_3 = gr.Image(label="Third Image", type="pil") | |
generate_button = gr.Button("Generate Image") | |
negative_prompt = gr.Textbox( | |
label="Enter your negative prompt", | |
placeholder="Type your negative prompt here...", | |
value=NEGATIVE_PROMPT, | |
) | |
# slider | |
with gr.Row(equal_height=True): | |
height_input = gr.Slider( | |
label="Height", minimum=256, maximum=1024, value=1024, step=128 | |
) | |
width_input = gr.Slider( | |
label="Width", minimum=256, maximum=1024, value=1024, step=128 | |
) | |
with gr.Row(equal_height=True): | |
text_guidance_scale_input = gr.Slider( | |
label="Text Guidance Scale", | |
minimum=1.0, | |
maximum=8.0, | |
value=5.0, | |
step=0.1, | |
) | |
image_guidance_scale_input = gr.Slider( | |
label="Image Guidance Scale", | |
minimum=1.0, | |
maximum=3.0, | |
value=2.0, | |
step=0.1, | |
) | |
with gr.Row(equal_height=True): | |
cfg_range_start = gr.Slider( | |
label="CFG Range Start", | |
minimum=0.0, | |
maximum=1.0, | |
value=0.0, | |
step=0.1, | |
) | |
cfg_range_end = gr.Slider( | |
label="CFG Range End", | |
minimum=0.0, | |
maximum=1.0, | |
value=1.0, | |
step=0.1, | |
) | |
def adjust_end_slider(start_val, end_val): | |
return max(start_val, end_val) | |
def adjust_start_slider(end_val, start_val): | |
return min(end_val, start_val) | |
cfg_range_start.input( | |
fn=adjust_end_slider, | |
inputs=[cfg_range_start, cfg_range_end], | |
outputs=[cfg_range_end] | |
) | |
cfg_range_end.input( | |
fn=adjust_start_slider, | |
inputs=[cfg_range_end, cfg_range_start], | |
outputs=[cfg_range_start] | |
) | |
with gr.Row(equal_height=True): | |
scheduler_input = gr.Dropdown( | |
label="Scheduler", | |
choices=["euler", "dpmsolver"], | |
value="euler", | |
info="The scheduler to use for the model.", | |
) | |
num_inference_steps = gr.Slider( | |
label="Inference Steps", minimum=20, maximum=100, value=50, step=1 | |
) | |
with gr.Row(equal_height=True): | |
num_images_per_prompt = gr.Slider( | |
label="Number of images per prompt", | |
minimum=1, | |
maximum=4, | |
value=1, | |
step=1, | |
) | |
seed_input = gr.Slider( | |
label="Seed", minimum=-1, maximum=2147483647, value=0, step=1 | |
) | |
with gr.Row(equal_height=True): | |
max_input_image_side_length = gr.Slider( | |
label="max_input_image_side_length", | |
minimum=256, | |
maximum=2048, | |
value=2048, | |
step=256, | |
) | |
max_pixels = gr.Slider( | |
label="max_pixels", | |
minimum=256 * 256, | |
maximum=1536 * 1536, | |
value=1024 * 1024, | |
step=256 * 256, | |
) | |
with gr.Column(): | |
with gr.Column(): | |
# output image | |
output_image = gr.Image(label="Output Image") | |
global save_images | |
save_images = gr.Checkbox(label="Save generated images", value=False) | |
global accelerator | |
global pipeline | |
bf16 = True | |
accelerator = Accelerator(mixed_precision="bf16" if bf16 else "no") | |
weight_dtype = torch.bfloat16 if bf16 else torch.float32 | |
pipeline = load_pipeline(accelerator, weight_dtype, args) | |
# click | |
generate_button.click( | |
run, | |
inputs=[ | |
instruction, | |
width_input, | |
height_input, | |
scheduler_input, | |
num_inference_steps, | |
image_input_1, | |
image_input_2, | |
image_input_3, | |
negative_prompt, | |
text_guidance_scale_input, | |
image_guidance_scale_input, | |
cfg_range_start, | |
cfg_range_end, | |
num_images_per_prompt, | |
max_input_image_side_length, | |
max_pixels, | |
seed_input, | |
], | |
outputs=output_image, | |
) | |
gr.Examples( | |
examples=get_example(), | |
fn=run_for_examples, | |
inputs=[ | |
instruction, | |
width_input, | |
height_input, | |
scheduler_input, | |
num_inference_steps, | |
image_input_1, | |
image_input_2, | |
image_input_3, | |
negative_prompt, | |
text_guidance_scale_input, | |
image_guidance_scale_input, | |
cfg_range_start, | |
cfg_range_end, | |
num_images_per_prompt, | |
max_input_image_side_length, | |
max_pixels, | |
seed_input, | |
], | |
outputs=output_image, | |
) | |
gr.Markdown(article) | |
# launch | |
demo.launch(share=args.share, server_port=args.port, allowed_paths=[ROOT_DIR]) | |
def parse_args(): | |
parser = argparse.ArgumentParser(description="Run the OmniGen2") | |
parser.add_argument("--share", action="store_true", help="Share the Gradio app") | |
parser.add_argument( | |
"--port", type=int, default=7860, help="Port to use for the Gradio app" | |
) | |
parser.add_argument( | |
"--model_path", | |
type=str, | |
default="OmniGen2/OmniGen2", | |
help="Path or HuggingFace name of the model to load." | |
) | |
parser.add_argument( | |
"--enable_model_cpu_offload", | |
action="store_true", | |
help="Enable model CPU offload." | |
) | |
parser.add_argument( | |
"--enable_sequential_cpu_offload", | |
action="store_true", | |
help="Enable sequential CPU offload." | |
) | |
args = parser.parse_args() | |
return args | |
if __name__ == "__main__": | |
args = parse_args() | |
main(args) | |