--- # Space metadata for Hugging Face # This tells the Space which SDK and entry file to run # Safe to keep at top of README; ignored by GitHub rendering # (Hugging Face parses the YAML front‑matter) title: CompI β€” Final Dashboard emoji: 🎨 colorFrom: indigo colorTo: purple sdk: streamlit app_file: src/ui/compi_phase3_final_dashboard.py pinned: false --- # CompI - Compositional Intelligence Project A multi-modal AI system that generates creative content by combining text, images, audio, and emotional context. Note: All documentation has been consolidated under docs/. See docs/README.md for an index of guides. ## πŸš€ Project Overview CompI (Compositional Intelligence) is designed to create rich, contextually-aware content by: - Processing text prompts with emotional analysis - Generating images using Stable Diffusion - Creating audio compositions - Combining multiple modalities for enhanced creative output ## πŸ“ Project Structure ``` Project CompI/ β”œβ”€β”€ src/ # Source code β”‚ β”œβ”€β”€ generators/ # Image generation modules β”‚ β”œβ”€β”€ models/ # Model implementations β”‚ β”œβ”€β”€ utils/ # Utility functions β”‚ β”œβ”€β”€ data/ # Data processing β”‚ β”œβ”€β”€ ui/ # User interface components β”‚ └── setup_env.py # Environment setup script β”œβ”€β”€ notebooks/ # Jupyter notebooks for experimentation β”œβ”€β”€ data/ # Dataset storage β”œβ”€β”€ outputs/ # Generated content β”œβ”€β”€ tests/ # Unit tests β”œβ”€β”€ run_*.py # Convenience scripts for generators β”œβ”€β”€ requirements.txt # Python dependencies └── README.md # This file ``` ## πŸ› οΈ Setup Instructions ### 1. Create Virtual Environment ```bash # Using conda (recommended for ML projects) conda create -n compi-env python=3.10 -y conda activate compi-env # OR using venv python -m venv compi-env # Windows compi-env\Scripts\activate # Linux/Mac source compi-env/bin/activate ``` ### 2. Install Dependencies **For GPU users (recommended for faster generation):** ```bash # First, check your CUDA version nvidia-smi # Install PyTorch with CUDA support first (replace cu121 with your CUDA version) pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu121 # Then install remaining requirements pip install -r requirements.txt ``` **For CPU-only users:** ```bash pip install -r requirements.txt ``` ### 3. Test Installation ```bash python src/test_setup.py ``` ## πŸš€ Quick Start ### Phase 1: Text-to-Image Generation ```bash # Basic text-to-image generation python run_basic_generation.py "A magical forest, digital art" # Advanced generation with style conditioning python run_advanced_styling.py "dragon in a crystal cave" --style "oil painting" --mood "dramatic" # Interactive style selection python run_styled_generation.py # Quality evaluation and analysis python run_evaluation.py # Personal style training with LoRA python run_lora_training.py --dataset-dir datasets/my_style # Generate with personal style python run_style_generation.py --lora-path lora_models/my_style/checkpoint-1000 "artwork in my_style" ``` ### Phase 2.A: Audio-to-Image Generation 🎡 ```bash # Install audio processing dependencies pip install openai-whisper # Streamlit UI (Recommended) streamlit run src/ui/compi_phase2a_streamlit_ui.py # Command line generation python run_phase2a_audio_to_image.py --prompt "mystical forest" --audio "music.mp3" # Interactive mode python run_phase2a_audio_to_image.py --interactive # Test installation python src/test_phase2a.py # Run examples python examples/phase2a_audio_examples.py --example all ``` ### Phase 2.B: Data/Logic-to-Image Generation πŸ“Š ```bash # Streamlit UI (Recommended) streamlit run src/ui/compi_phase2b_streamlit_ui.py # Command line generation with CSV data python run_phase2b_data_to_image.py --prompt "data visualization" --csv "data.csv" # Mathematical formula generation python run_phase2b_data_to_image.py --prompt "mathematical harmony" --formula "np.sin(np.linspace(0, 4*np.pi, 100))" # Batch processing python run_phase2b_data_to_image.py --batch-csv "data_folder/" --prompt "scientific patterns" # Interactive mode python run_phase2b_data_to_image.py --interactive ``` ### Phase 2.C: Emotional/Contextual Input to Image Generation πŸŒ€ ```bash # Streamlit UI (Recommended) streamlit run src/ui/compi_phase2c_streamlit_ui.py # Command line generation with preset emotion python run_phase2c_emotion_to_image.py --prompt "mystical forest" --emotion "mysterious" # Custom emotion generation python run_phase2c_emotion_to_image.py --prompt "urban landscape" --emotion "🀩" --type custom # Descriptive emotion generation python run_phase2c_emotion_to_image.py --prompt "mountain vista" --emotion "I feel a sense of wonder" --type text # Batch emotion processing python run_phase2c_emotion_to_image.py --batch-emotions "joyful,sad,mysterious" --prompt "abstract art" # Interactive mode python run_phase2c_emotion_to_image.py --interactive ``` ### Phase 2.D: Real-Time Data Feeds to Image Generation 🌎 ```bash # Streamlit UI (Recommended) streamlit run src/ui/compi_phase2d_streamlit_ui.py # Command line generation with weather data python run_phase2d_realtime_to_image.py --prompt "cityscape" --weather --city "Tokyo" # News-driven generation python run_phase2d_realtime_to_image.py --prompt "abstract art" --news --category "technology" # Multi-source generation python run_phase2d_realtime_to_image.py --prompt "world state" --weather --news --financial # Temporal series generation python run_phase2d_realtime_to_image.py --prompt "evolving world" --weather --temporal "0,30,60" # Interactive mode python run_phase2d_realtime_to_image.py --interactive ``` ### Phase 2.E: Style Reference/Example Image to AI Art πŸ–ΌοΈ ```bash # Streamlit UI (Recommended) streamlit run src/ui/compi_phase2e_streamlit_ui.py # Command line generation with reference image python run_phase2e_refimg_to_image.py --prompt "magical forest" --reference "path/to/image.jpg" --strength 0.6 # Web URL reference python run_phase2e_refimg_to_image.py --prompt "cyberpunk city" --reference "https://example.com/artwork.jpg" # Batch generation with multiple variations python run_phase2e_refimg_to_image.py --prompt "fantasy landscape" --reference "image.png" --num-images 3 # Style analysis only python run_phase2e_refimg_to_image.py --analyze-only --reference "artwork.jpg" # Interactive mode python run_phase2e_refimg_to_image.py --interactive ``` ## πŸ§ͺ NEW: Ultimate Multimodal Dashboard (True Fusion) πŸš€ **Revolutionary upgrade with REAL processing of each input type!** ```bash # Launch the upgraded dashboard with true multimodal fusion python run_ultimate_multimodal_dashboard.py # Or run directly streamlit run src/ui/compi_ultimate_multimodal_dashboard.py --server.port 8503 ``` **Key Improvements:** - βœ… **Real Audio Analysis**: Whisper transcription + librosa features - βœ… **Actual Data Processing**: CSV analysis + formula evaluation - βœ… **True Emotion Analysis**: TextBlob sentiment classification - βœ… **Live Real-time Data**: Weather/news API integration - βœ… **Advanced References**: img2img + ControlNet processing - βœ… **Intelligent Fusion**: Actual content processing (not static keywords) **Access at:** `http://localhost:8503` **See:** `ULTIMATE_MULTIMODAL_DASHBOARD_README.md` for detailed documentation. ## πŸ–ΌοΈ NEW: Phase 3.C Advanced Reference Integration πŸš€ **Professional multi-reference control with hybrid generation modes!** **Key Features:** - βœ… **Role-Based Reference Assignment**: Select images for style vs structure - βœ… **Live ControlNet Previews**: Real-time Canny/Depth preprocessing - βœ… **Hybrid Generation Modes**: CN + IMG2IMG simultaneous processing - βœ… **Professional Controls**: Independent strength tuning for style/structure - βœ… **Seamless Integration**: Works with all CompI multimodal phases **See:** `PHASE3C_ADVANCED_REFERENCE_INTEGRATION.md` for complete documentation. ## πŸ—‚οΈ NEW: Phase 3.D Professional Workflow Manager πŸš€ **Complete creative workflow platform with unified logging, presets, and export bundles!** **Key Features:** - βœ… **Unified Run Logging**: Auto-ingests from all CompI phases - βœ… **Professional Gallery**: Advanced filtering and search - βœ… **Preset System**: Save/load complete generation configs - βœ… **Export Bundles**: ZIP packages with metadata and reproducibility - βœ… **Annotation System**: Ratings, tags, and notes for workflow management **Launch:** `python run_phase3d_workflow_manager.py` | **Access:** `http://localhost:8504` **See:** `docs/PHASE3D_WORKFLOW_MANAGER_GUIDE.md` for complete documentation. ## βš™οΈ NEW: Phase 3.E Performance, Model Management & Reliability πŸš€ **Production-grade performance optimization, model switching, and intelligent reliability!** **Key Features:** - βœ… **Model Manager**: Dynamic SD 1.5 ↔ SDXL switching with auto-availability checking - βœ… **LoRA Integration**: Universal LoRA loading with scale control across all models - βœ… **Performance Controls**: xFormers, attention slicing, VAE optimizations, precision control - βœ… **VRAM Monitoring**: Real-time GPU memory usage tracking and alerts - βœ… **Reliability Engine**: OOM-safe auto-retry with intelligent fallbacks - βœ… **Batch Processing**: Seed-controlled batch generation with memory management - βœ… **Upscaler Integration**: Optional 2x latent upscaling for enhanced quality **Launch:** `python run_phase3e_performance_manager.py` | **Access:** `http://localhost:8505` **See:** `docs/PHASE3E_PERFORMANCE_GUIDE.md` for complete documentation. ## πŸ§ͺ ULTIMATE: Phase 3 Final Dashboard - Complete Integration! πŸŽ‰ **The ultimate CompI interface that integrates ALL Phase 3 components into one unified creative environment!** **Complete Feature Integration:** - βœ… **🧩 Multimodal Fusion (3.A/3.B)**: Real audio, data, emotion, real-time processing - βœ… **πŸ–ΌοΈ Advanced References (3.C)**: Role assignment, ControlNet, live previews - βœ… **βš™οΈ Performance Management (3.E)**: Model switching, LoRA, VRAM monitoring - βœ… **πŸŽ›οΈ Intelligent Generation**: Hybrid modes with automatic fallback strategies - βœ… **πŸ–ΌοΈ Professional Gallery (3.D)**: Filtering, rating, annotation system - βœ… **πŸ’Ύ Preset Management (3.D)**: Save/load complete configurations - βœ… **πŸ“¦ Export System (3.D)**: Complete bundles with metadata and reproducibility **Professional Workflow:** 1. **Configure multimodal inputs** (text, audio, data, emotion, real-time) 2. **Upload and assign references** (style vs structure roles) 3. **Choose model and optimize performance** (SD 1.5/SDXL, LoRA, optimizations) 4. **Generate with intelligent fusion** (automatic mode selection) 5. **Review and annotate results** (gallery with rating/tagging) 6. **Save presets and export bundles** (complete reproducibility) **Launch:** `python run_phase3_final_dashboard.py` | **Access:** `http://localhost:8506` **See:** `docs/PHASE3_FINAL_DASHBOARD_GUIDE.md` for complete documentation. --- ## 🎯 **CompI Project Status: COMPLETE** βœ… **CompI has achieved its ultimate vision: the world's most comprehensive and production-ready multimodal AI art generation platform!** ### **βœ… All Phases Complete:** - **βœ… Phase 1**: Foundation (text-to-image, styling, evaluation, LoRA training) - **βœ… Phase 2**: Multimodal integration (audio, data, emotion, real-time, references) - **βœ… Phase 3**: Advanced features (fusion dashboard, advanced references, workflow management, performance optimization) ### **πŸš€ What CompI Offers:** - **Complete Creative Platform**: From generation to professional workflow management - **Production-Grade Reliability**: Robust error handling and performance optimization - **Professional Tools**: Industry-standard features for serious creative and commercial work - **Universal Compatibility**: Works across different hardware configurations - **Extensible Foundation**: Ready for future enhancements and integrations **CompI is now the ultimate multimodal AI art generation platform - ready for professional creative work!** 🎨✨ ## 🎯 Core Features - **Text Analysis**: Emotion detection and sentiment analysis - **Image Generation**: Stable Diffusion integration with advanced conditioning - **Audio Processing**: Music and sound analysis with Whisper integration - **Data Processing**: CSV analysis and mathematical formula evaluation - **Emotion Processing**: Preset emotions, custom emotions, emoji, and contextual analysis - **Real-Time Integration**: Live weather, news, and financial data feeds - **Style Reference**: Upload/URL image guidance with AI-powered style analysis - **Multi-modal Fusion**: Combining text, audio, data, emotions, real-time feeds, and visual references - **Pattern Recognition**: Automatic detection of trends, correlations, and seasonality - **Poetic Interpretation**: Converting data patterns and emotions into artistic language - **Color Psychology**: Emotion-based color palette generation and conditioning - **Temporal Awareness**: Time-sensitive data processing and evolution tracking ## πŸ”§ Tech Stack - **Deep Learning**: PyTorch, Transformers, Diffusers - **Audio**: librosa, soundfile - **UI**: Streamlit/Gradio - **Data**: pandas, numpy - **Visualization**: matplotlib, seaborn ## πŸ“ Usage Coming soon - basic usage examples and API documentation. ## 🀝 Contributing This is a development project. Feel free to experiment and extend functionality. ## πŸ“„ License MIT License - see LICENSE file for details. # Project_CompI