# CompI Phase 1.D: Baseline Output Quality Evaluation Guide ## 🎯 Overview Phase 1.D provides comprehensive tools for systematically evaluating the quality, coherence, and consistency of images generated by your CompI pipeline. This phase is crucial for understanding your model's performance and tracking improvements over time. ## 🛠️ Tools Provided ### 1. **Streamlit Web Interface** (`compi_phase1d_evaluate_quality.py`) - **Interactive visual evaluation** with side-by-side image and metadata display - **Multi-criteria scoring system** (1-5 stars) for comprehensive assessment - **Objective metrics calculation** (perceptual hashes, file size, dimensions) - **Persistent evaluation logging** with CSV export - **Batch evaluation capabilities** for efficient processing ### 2. **Command-Line Interface** (`compi_phase1d_cli_evaluation.py`) - **Batch processing** for automated evaluation workflows - **Statistical analysis** and performance summaries - **Detailed report generation** with recommendations - **Filtering and listing** capabilities for organized review ### 3. **Convenient Launcher** (`run_evaluation.py`) - **One-click startup** for the web interface - **Automatic environment checking** and error handling ## 📊 Evaluation Criteria The evaluation system uses **5 comprehensive criteria**, each scored on a **1-5 scale**: ### 1. **Prompt Adherence** - How well does the image match the text prompt? - Scale: 1=Poor match → 5=Perfect match ### 2. **Style Consistency** - How well does the image reflect the intended artistic style? - Scale: 1=Style not evident → 5=Style perfectly executed ### 3. **Mood & Atmosphere** - How well does the image convey the intended mood/atmosphere? - Scale: 1=Wrong mood → 5=Perfect mood ### 4. **Technical Quality** - Overall image quality (resolution, composition, artifacts) - Scale: 1=Poor quality → 5=Excellent quality ### 5. **Creative Appeal** - Subjective aesthetic and creative value - Scale: 1=Unappealing → 5=Highly appealing ## 🚀 Quick Start ### Web Interface (Recommended for Manual Review) ```bash # Install required dependency pip install imagehash # Launch the evaluation interface python run_evaluation.py # Or run directly streamlit run src/generators/compi_phase1d_evaluate_quality.py ``` The web interface will open at `http://localhost:8501` with: - **Single Image Review**: Detailed evaluation of individual images - **Batch Evaluation**: Quick scoring for multiple images - **Summary Analysis**: Statistics and performance insights ### Command-Line Interface (For Automation) ```bash # Analyze existing evaluations python src/generators/compi_phase1d_cli_evaluation.py --analyze # List unevaluated images python src/generators/compi_phase1d_cli_evaluation.py --list-unevaluated # Batch score all unevaluated images (prompt, style, mood, quality, appeal) python src/generators/compi_phase1d_cli_evaluation.py --batch-score 4 3 4 4 3 --notes "Initial baseline evaluation" # Generate detailed report python src/generators/compi_phase1d_cli_evaluation.py --report --output evaluation_report.txt ``` ## 📁 File Structure ``` outputs/ ├── [generated images].png # Your CompI-generated images ├── evaluation_log.csv # Detailed evaluation data └── evaluation_summary.json # Summary statistics src/generators/ ├── compi_phase1d_evaluate_quality.py # Main Streamlit interface └── compi_phase1d_cli_evaluation.py # Command-line tools run_evaluation.py # Convenient launcher ``` ## 📈 Understanding Your Data ### Evaluation Log (`outputs/evaluation_log.csv`) Contains detailed records with columns: - **Image metadata**: filename, prompt, style, mood, seed, variation - **Evaluation scores**: All 5 criteria scores (1-5) - **Objective metrics**: dimensions, file size, perceptual hashes - **Evaluation metadata**: timestamp, notes, evaluator comments ### Key Metrics to Track 1. **Overall Score Trends**: Are your images improving over time? 2. **Criteria Performance**: Which aspects (prompt match, style, etc.) need work? 3. **Style/Mood Effectiveness**: Which combinations work best? 4. **Consistency**: Are similar prompts producing consistent results? ## 🎯 Best Practices ### Systematic Evaluation Workflow 1. **Generate a batch** of images using your CompI tools 2. **Evaluate systematically** using consistent criteria 3. **Analyze patterns** in the data to identify strengths/weaknesses 4. **Adjust generation parameters** based on insights 5. **Re-evaluate** to measure improvements ### Evaluation Tips - **Be consistent** in your scoring criteria across sessions - **Use notes** to capture specific observations and issues - **Evaluate in batches** of similar style/mood for better comparison - **Track changes** over time as you refine your generation process ### Interpreting Scores - **4.0+ average**: Excellent performance, ready for production use - **3.0-3.9 average**: Good performance, minor improvements needed - **2.0-2.9 average**: Moderate performance, significant improvements needed - **Below 2.0**: Poor performance, major adjustments required ## 🔧 Advanced Usage ### Filtering and Analysis ```bash # Analyze only specific styles python src/generators/compi_phase1d_cli_evaluation.py --analyze --style "anime" # List images by mood python src/generators/compi_phase1d_cli_evaluation.py --list-all --mood "dramatic" # Generate style-specific report python src/generators/compi_phase1d_cli_evaluation.py --report --style "oil painting" --output oil_painting_analysis.txt ``` ### Custom Evaluation Workflows The evaluation tools are designed to be flexible: - **Modify criteria** by editing `EVALUATION_CRITERIA` in the source - **Add custom metrics** by extending the `get_image_metrics()` function - **Integrate with other tools** using the CSV export functionality ## 📊 Sample Analysis Output ``` 📊 CompI Phase 1.D - Evaluation Analysis ================================================== Total Evaluated Images: 25 📈 Score Statistics: Prompt Adherence : 3.84 ± 0.75 (range: 2-5) Style Consistency : 3.52 ± 0.87 (range: 2-5) Mood & Atmosphere : 3.68 ± 0.69 (range: 2-5) Technical Quality : 4.12 ± 0.60 (range: 3-5) Creative Appeal : 3.76 ± 0.83 (range: 2-5) 🎨 Top Performing Styles (by Prompt Match): anime : 4.20 oil painting : 3.90 digital art : 3.75 ``` ## 🚀 Next Steps After completing Phase 1.D evaluation: 1. **Identify improvement areas** from your evaluation data 2. **Experiment with parameter adjustments** for low-scoring criteria 3. **Document successful combinations** for future use 4. **Consider Phase 2** development based on baseline performance 5. **Set up regular evaluation cycles** for continuous improvement ## 🤝 Integration with Other Phases Phase 1.D evaluation data can inform: - **Phase 1.A/1.B parameter tuning**: Adjust generation settings based on quality scores - **Phase 1.C UI improvements**: Highlight best-performing style/mood combinations - **Future phases**: Use baseline metrics to measure advanced feature improvements --- **Happy Evaluating! 🎨📊** The systematic evaluation provided by Phase 1.D is essential for understanding and improving your CompI system's performance. Use these tools regularly to maintain high-quality output and track your progress over time.