|
""" |
|
CompI Phase 2.C: Emotional/Contextual Input to Image Generation |
|
|
|
This module implements emotion-driven AI art generation that combines: |
|
- Emotion detection and sentiment analysis |
|
- Contextual mood processing |
|
- Emoji and text-based emotion recognition |
|
- Color palette generation based on emotions |
|
- Intelligent fusion of emotional context with creative prompts |
|
|
|
Features: |
|
- Support for preset emotions, custom emotions, and emoji input |
|
- Automatic sentiment analysis with TextBlob |
|
- Emotion-to-color palette mapping |
|
- Contextual prompt enhancement |
|
- Comprehensive metadata logging and filename conventions |
|
- Batch processing capabilities for multiple emotional contexts |
|
""" |
|
|
|
import os |
|
import sys |
|
import torch |
|
import json |
|
from datetime import datetime |
|
from typing import Dict, List, Optional, Tuple, Union |
|
from pathlib import Path |
|
import logging |
|
|
|
|
|
sys.path.append(os.path.join(os.path.dirname(__file__), '..', '..')) |
|
|
|
from diffusers import StableDiffusionPipeline |
|
from PIL import Image |
|
|
|
from src.utils.emotion_utils import EmotionProcessor, EmotionalPromptEnhancer, EmotionAnalysis, EmotionCategory |
|
from src.utils.logging_utils import setup_logger |
|
from src.utils.file_utils import ensure_directory_exists, generate_filename |
|
|
|
|
|
logger = setup_logger(__name__) |
|
|
|
class CompIPhase2CEmotionToImage: |
|
""" |
|
CompI Phase 2.C: Emotional/Contextual Input to Image Generation System |
|
|
|
Transforms emotions, moods, and contextual feelings into AI-generated art |
|
""" |
|
|
|
def __init__( |
|
self, |
|
model_name: str = "runwayml/stable-diffusion-v1-5", |
|
device: str = "auto", |
|
output_dir: str = "outputs" |
|
): |
|
""" |
|
Initialize the emotion-to-image generation system |
|
|
|
Args: |
|
model_name: Stable Diffusion model to use |
|
device: Device for inference (auto, cpu, cuda) |
|
output_dir: Directory for saving generated images |
|
""" |
|
self.model_name = model_name |
|
self.device = self._setup_device(device) |
|
self.output_dir = Path(output_dir) |
|
ensure_directory_exists(self.output_dir) |
|
|
|
|
|
self.pipe = None |
|
self.emotion_processor = EmotionProcessor() |
|
self.prompt_enhancer = EmotionalPromptEnhancer() |
|
|
|
logger.info(f"Initialized CompI Phase 2.C on {self.device}") |
|
|
|
def _setup_device(self, device: str) -> str: |
|
"""Setup and validate device""" |
|
if device == "auto": |
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
|
if device == "cuda" and not torch.cuda.is_available(): |
|
logger.warning("CUDA requested but not available, falling back to CPU") |
|
device = "cpu" |
|
|
|
return device |
|
|
|
def _load_pipeline(self): |
|
"""Lazy load the Stable Diffusion pipeline""" |
|
if self.pipe is None: |
|
logger.info(f"Loading Stable Diffusion model: {self.model_name}") |
|
|
|
|
|
def dummy_safety_checker(images, **kwargs): |
|
return images, [False] * len(images) |
|
|
|
self.pipe = StableDiffusionPipeline.from_pretrained( |
|
self.model_name, |
|
torch_dtype=torch.float16 if self.device == "cuda" else torch.float32, |
|
safety_checker=dummy_safety_checker, |
|
requires_safety_checker=False |
|
) |
|
|
|
self.pipe = self.pipe.to(self.device) |
|
self.pipe.enable_attention_slicing() |
|
|
|
if self.device == "cuda": |
|
self.pipe.enable_model_cpu_offload() |
|
|
|
logger.info("Stable Diffusion pipeline loaded successfully") |
|
|
|
def analyze_emotion( |
|
self, |
|
emotion_input: str, |
|
emotion_type: str = "auto", |
|
contextual_text: Optional[str] = None |
|
) -> EmotionAnalysis: |
|
""" |
|
Comprehensive emotion analysis |
|
|
|
Args: |
|
emotion_input: Emotion input (preset, custom, emoji, or text) |
|
emotion_type: Type of input ('preset', 'custom', 'emoji', 'text', 'auto') |
|
contextual_text: Additional contextual text for analysis |
|
|
|
Returns: |
|
EmotionAnalysis object with complete analysis |
|
""" |
|
logger.info(f"Analyzing emotion input: {emotion_input}") |
|
|
|
|
|
analysis_text = emotion_input |
|
if contextual_text: |
|
analysis_text += f" {contextual_text}" |
|
|
|
|
|
selected_emotion = None |
|
if emotion_type == "preset" or (emotion_type == "auto" and emotion_input.lower() in self.emotion_processor.preset_emotions): |
|
selected_emotion = emotion_input.lower() |
|
|
|
|
|
emotion_analysis = self.emotion_processor.analyze_emotion(analysis_text, selected_emotion) |
|
|
|
return emotion_analysis |
|
|
|
def generate_image( |
|
self, |
|
text_prompt: str, |
|
style: str = "", |
|
emotion_input: str = "", |
|
emotion_type: str = "auto", |
|
contextual_text: str = "", |
|
enhancement_strength: float = 0.7, |
|
num_images: int = 1, |
|
height: int = 512, |
|
width: int = 512, |
|
num_inference_steps: int = 30, |
|
guidance_scale: float = 7.5, |
|
seed: Optional[int] = None |
|
) -> List[Dict]: |
|
""" |
|
Generate images with emotional conditioning |
|
|
|
Args: |
|
text_prompt: Base text prompt |
|
style: Art style |
|
emotion_input: Emotion input (preset, custom, emoji, or descriptive text) |
|
emotion_type: Type of emotion input |
|
contextual_text: Additional contextual description |
|
enhancement_strength: How strongly to apply emotion (0-1) |
|
num_images: Number of images to generate |
|
height: Image height |
|
width: Image width |
|
num_inference_steps: Number of diffusion steps |
|
guidance_scale: Guidance scale for generation |
|
seed: Random seed for reproducibility |
|
|
|
Returns: |
|
List of generation results with metadata |
|
""" |
|
self._load_pipeline() |
|
|
|
|
|
emotion_analysis = None |
|
if emotion_input.strip(): |
|
emotion_analysis = self.analyze_emotion(emotion_input, emotion_type, contextual_text) |
|
|
|
|
|
if emotion_analysis: |
|
enhanced_prompt = self.prompt_enhancer.enhance_prompt_with_emotion( |
|
text_prompt, style, emotion_analysis, enhancement_strength |
|
) |
|
else: |
|
enhanced_prompt = text_prompt |
|
if style: |
|
enhanced_prompt += f", {style}" |
|
|
|
logger.info(f"Generating {num_images} image(s) with enhanced prompt") |
|
|
|
results = [] |
|
|
|
for i in range(num_images): |
|
|
|
current_seed = seed if seed is not None else torch.seed() |
|
generator = torch.Generator(device=self.device).manual_seed(current_seed) |
|
|
|
|
|
with torch.autocast(self.device) if self.device == "cuda" else torch.no_grad(): |
|
result = self.pipe( |
|
enhanced_prompt, |
|
height=height, |
|
width=width, |
|
num_inference_steps=num_inference_steps, |
|
guidance_scale=guidance_scale, |
|
generator=generator |
|
) |
|
|
|
image = result.images[0] |
|
|
|
|
|
metadata = { |
|
"timestamp": datetime.now().isoformat(), |
|
"text_prompt": text_prompt, |
|
"style": style, |
|
"emotion_input": emotion_input, |
|
"emotion_type": emotion_type, |
|
"contextual_text": contextual_text, |
|
"enhancement_strength": enhancement_strength, |
|
"enhanced_prompt": enhanced_prompt, |
|
"generation_params": { |
|
"height": height, |
|
"width": width, |
|
"num_inference_steps": num_inference_steps, |
|
"guidance_scale": guidance_scale, |
|
"seed": current_seed, |
|
"model": self.model_name |
|
}, |
|
"device": self.device, |
|
"phase": "2C_emotion_to_image" |
|
} |
|
|
|
|
|
if emotion_analysis: |
|
metadata["emotion_analysis"] = emotion_analysis.to_dict() |
|
metadata["emotion_tags"] = self.prompt_enhancer.generate_emotion_tags(emotion_analysis) |
|
|
|
|
|
filename = self._generate_filename( |
|
text_prompt, style, emotion_analysis, current_seed, i + 1 |
|
) |
|
|
|
|
|
image_path = self.output_dir / f"{filename}.png" |
|
metadata_path = self.output_dir / f"{filename}_metadata.json" |
|
|
|
image.save(image_path) |
|
with open(metadata_path, 'w') as f: |
|
json.dump(metadata, f, indent=2) |
|
|
|
results.append({ |
|
"image": image, |
|
"image_path": str(image_path), |
|
"metadata_path": str(metadata_path), |
|
"metadata": metadata, |
|
"filename": filename, |
|
"emotion_analysis": emotion_analysis |
|
}) |
|
|
|
logger.info(f"Generated image {i+1}/{num_images}: {filename}") |
|
|
|
return results |
|
|
|
def _generate_filename( |
|
self, |
|
prompt: str, |
|
style: str, |
|
emotion_analysis: Optional[EmotionAnalysis], |
|
seed: int, |
|
variation: int |
|
) -> str: |
|
"""Generate descriptive filename following CompI conventions""" |
|
|
|
|
|
prompt_words = prompt.lower().replace(',', '').split()[:5] |
|
prompt_slug = "_".join(prompt_words) |
|
|
|
|
|
style_slug = style.replace(" ", "").replace(",", "")[:10] if style else "standard" |
|
|
|
|
|
if emotion_analysis: |
|
emotion_slug = f"{emotion_analysis.primary_emotion.value}_{emotion_analysis.intensity_level}"[:15] |
|
else: |
|
emotion_slug = "neutral" |
|
|
|
|
|
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") |
|
|
|
|
|
filename = f"{prompt_slug}_{style_slug}_{emotion_slug}_{timestamp}_seed{seed}_EMO_v{variation}" |
|
|
|
return filename |
|
|
|
def batch_process_emotions( |
|
self, |
|
text_prompt: str, |
|
style: str, |
|
emotions: List[str], |
|
emotion_type: str = "auto", |
|
**generation_kwargs |
|
) -> List[Dict]: |
|
""" |
|
Process multiple emotions in batch |
|
|
|
Args: |
|
text_prompt: Base text prompt for all generations |
|
style: Art style |
|
emotions: List of emotions to process |
|
emotion_type: Type of emotion input |
|
**generation_kwargs: Additional generation parameters |
|
|
|
Returns: |
|
List of all generation results |
|
""" |
|
logger.info(f"Processing {len(emotions)} emotions in batch") |
|
|
|
all_results = [] |
|
for i, emotion in enumerate(emotions): |
|
logger.info(f"Processing emotion {i+1}/{len(emotions)}: {emotion}") |
|
|
|
try: |
|
results = self.generate_image( |
|
text_prompt=text_prompt, |
|
style=style, |
|
emotion_input=emotion, |
|
emotion_type=emotion_type, |
|
**generation_kwargs |
|
) |
|
all_results.extend(results) |
|
|
|
except Exception as e: |
|
logger.error(f"Error processing emotion '{emotion}': {e}") |
|
continue |
|
|
|
logger.info(f"Batch processing complete: {len(all_results)} images generated") |
|
return all_results |
|
|
|
def generate_emotion_palette_art( |
|
self, |
|
text_prompt: str, |
|
style: str, |
|
emotion_input: str, |
|
use_color_conditioning: bool = True, |
|
**generation_kwargs |
|
) -> List[Dict]: |
|
""" |
|
Generate art using emotion-derived color palettes |
|
|
|
Args: |
|
text_prompt: Base text prompt |
|
style: Art style |
|
emotion_input: Emotion input |
|
use_color_conditioning: Whether to add color palette to prompt |
|
**generation_kwargs: Additional generation parameters |
|
|
|
Returns: |
|
List of generation results with color palette conditioning |
|
""" |
|
|
|
emotion_analysis = self.analyze_emotion(emotion_input) |
|
|
|
|
|
if use_color_conditioning and emotion_analysis: |
|
color_names = self._hex_to_color_names(emotion_analysis.color_palette) |
|
color_prompt = f"with a color palette of {', '.join(color_names)}" |
|
enhanced_text_prompt = f"{text_prompt}, {color_prompt}" |
|
else: |
|
enhanced_text_prompt = text_prompt |
|
|
|
return self.generate_image( |
|
text_prompt=enhanced_text_prompt, |
|
style=style, |
|
emotion_input=emotion_input, |
|
**generation_kwargs |
|
) |
|
|
|
def _hex_to_color_names(self, hex_colors: List[str]) -> List[str]: |
|
"""Convert hex colors to approximate color names""" |
|
color_mapping = { |
|
"#FFD700": "golden", "#FFA500": "orange", "#FF69B4": "pink", |
|
"#00CED1": "turquoise", "#32CD32": "lime", "#4169E1": "blue", |
|
"#6495ED": "cornflower", "#708090": "slate", "#2F4F4F": "dark slate", |
|
"#191970": "midnight blue", "#DC143C": "crimson", "#B22222": "firebrick", |
|
"#8B0000": "dark red", "#FF4500": "orange red", "#FF6347": "tomato", |
|
"#800080": "purple", "#4B0082": "indigo", "#2E2E2E": "dark gray", |
|
"#696969": "dim gray", "#A9A9A9": "dark gray", "#FF1493": "deep pink", |
|
"#FFB6C1": "light pink", "#FFC0CB": "pink", "#FFFF00": "yellow", |
|
"#C71585": "medium violet", "#DB7093": "pale violet", "#20B2AA": "light sea green", |
|
"#48D1CC": "medium turquoise", "#40E0D0": "turquoise", "#AFEEEE": "pale turquoise", |
|
"#9370DB": "medium purple", "#8A2BE2": "blue violet", "#7B68EE": "medium slate blue", |
|
"#6A5ACD": "slate blue", "#483D8B": "dark slate blue", "#808080": "gray", |
|
"#C0C0C0": "silver", "#D3D3D3": "light gray", "#DCDCDC": "gainsboro" |
|
} |
|
|
|
color_names = [] |
|
for hex_color in hex_colors: |
|
color_name = color_mapping.get(hex_color.upper(), "colorful") |
|
color_names.append(color_name) |
|
|
|
return color_names |
|
|