Comp-I / src /generators /compi_phase2b_data_to_image.py
axrzce's picture
Deploy from GitHub main
338d95d verified
raw
history blame
15.1 kB
"""
CompI Phase 2.B: Data/Logic Input to Image Generation
This module implements data-driven AI art generation that combines:
- CSV data analysis and processing
- Mathematical formula evaluation
- Data-to-text conversion for prompt enhancement
- Data visualization for artistic conditioning
- Intelligent fusion of data insights with creative prompts
Features:
- Support for CSV files with comprehensive data analysis
- Safe mathematical formula evaluation with NumPy
- Poetic text generation from data patterns
- Data visualization creation for artistic inspiration
- Comprehensive metadata logging and filename conventions
- Batch processing capabilities for multiple datasets
"""
import os
import sys
import torch
import json
import pandas as pd
import numpy as np
from datetime import datetime
from typing import Dict, List, Optional, Tuple, Union
from pathlib import Path
import logging
# Add project root to path
sys.path.append(os.path.join(os.path.dirname(__file__), '..', '..'))
from diffusers import StableDiffusionPipeline
from PIL import Image
from src.utils.data_utils import DataProcessor, DataToTextConverter, DataVisualizer, DataFeatures
from src.utils.logging_utils import setup_logger
from src.utils.file_utils import ensure_directory_exists, generate_filename
# Setup logging
logger = setup_logger(__name__)
class CompIPhase2BDataToImage:
"""
CompI Phase 2.B: Data/Logic Input to Image Generation System
Transforms structured data and mathematical formulas into AI-generated art
"""
def __init__(
self,
model_name: str = "runwayml/stable-diffusion-v1-5",
device: str = "auto",
output_dir: str = "outputs",
visualization_style: str = "artistic"
):
"""
Initialize the data-to-image generation system
Args:
model_name: Stable Diffusion model to use
device: Device for inference (auto, cpu, cuda)
output_dir: Directory for saving generated images
visualization_style: Style for data visualizations
"""
self.model_name = model_name
self.device = self._setup_device(device)
self.output_dir = Path(output_dir)
ensure_directory_exists(self.output_dir)
# Initialize components
self.pipe = None
self.data_processor = DataProcessor()
self.text_converter = DataToTextConverter()
self.visualizer = DataVisualizer(style=visualization_style)
logger.info(f"Initialized CompI Phase 2.B on {self.device}")
def _setup_device(self, device: str) -> str:
"""Setup and validate device"""
if device == "auto":
device = "cuda" if torch.cuda.is_available() else "cpu"
if device == "cuda" and not torch.cuda.is_available():
logger.warning("CUDA requested but not available, falling back to CPU")
device = "cpu"
return device
def _load_pipeline(self):
"""Lazy load the Stable Diffusion pipeline"""
if self.pipe is None:
logger.info(f"Loading Stable Diffusion model: {self.model_name}")
# Custom safety checker that allows creative content
def dummy_safety_checker(images, **kwargs):
return images, [False] * len(images)
self.pipe = StableDiffusionPipeline.from_pretrained(
self.model_name,
torch_dtype=torch.float16 if self.device == "cuda" else torch.float32,
safety_checker=dummy_safety_checker,
requires_safety_checker=False
)
self.pipe = self.pipe.to(self.device)
self.pipe.enable_attention_slicing()
if self.device == "cuda":
self.pipe.enable_model_cpu_offload()
logger.info("Stable Diffusion pipeline loaded successfully")
def analyze_csv_data(self, csv_path: str) -> Tuple[pd.DataFrame, DataFeatures, str, Image.Image]:
"""
Comprehensive CSV data analysis
Args:
csv_path: Path to CSV file
Returns:
Tuple of (DataFrame, DataFeatures, poetic_description, visualization_image)
"""
logger.info(f"Analyzing CSV data: {csv_path}")
# Load and analyze data
df = pd.read_csv(csv_path)
features = self.data_processor.analyze_csv_data(df)
# Generate poetic description
poetic_description = self.text_converter.generate_poetic_description(features)
# Create visualization
visualization_image = self.visualizer.create_data_visualization(df, features)
return df, features, poetic_description, visualization_image
def evaluate_mathematical_formula(self, formula: str, num_points: int = 100) -> Tuple[np.ndarray, Dict, str, Image.Image]:
"""
Evaluate mathematical formula and create artistic interpretation
Args:
formula: Mathematical expression
num_points: Number of points to generate
Returns:
Tuple of (result_array, metadata, poetic_description, visualization_image)
"""
logger.info(f"Evaluating mathematical formula: {formula}")
# Evaluate formula
result_array, metadata = self.data_processor.evaluate_formula(formula, num_points)
# Generate poetic description
poetic_description = self.text_converter.generate_formula_description(formula, metadata)
# Create visualization
visualization_image = self.visualizer.create_formula_visualization(result_array, formula, metadata)
return result_array, metadata, poetic_description, visualization_image
def generate_image(
self,
text_prompt: str,
style: str = "",
mood: str = "",
csv_path: Optional[str] = None,
formula: Optional[str] = None,
num_images: int = 1,
height: int = 512,
width: int = 512,
num_inference_steps: int = 30,
guidance_scale: float = 7.5,
seed: Optional[int] = None,
save_data_visualization: bool = True
) -> List[Dict]:
"""
Generate images with data/formula conditioning
Args:
text_prompt: Base text prompt
style: Art style
mood: Mood/atmosphere
csv_path: Optional path to CSV file
formula: Optional mathematical formula
num_images: Number of images to generate
height: Image height
width: Image width
num_inference_steps: Number of diffusion steps
guidance_scale: Guidance scale for generation
seed: Random seed for reproducibility
save_data_visualization: Whether to save data visualization
Returns:
List of generation results with metadata
"""
self._load_pipeline()
# Process data input
data_features = None
poetic_description = ""
data_visualization = None
data_type = "none"
if csv_path and os.path.exists(csv_path):
df, data_features, poetic_description, data_visualization = self.analyze_csv_data(csv_path)
data_type = "csv"
elif formula and formula.strip():
result_array, formula_metadata, poetic_description, data_visualization = self.evaluate_mathematical_formula(formula)
data_type = "formula"
# Create enhanced prompt
enhanced_prompt = text_prompt
if style:
enhanced_prompt += f", {style}"
if mood:
enhanced_prompt += f", {mood}"
if poetic_description:
enhanced_prompt += f", {poetic_description}"
logger.info(f"Generating {num_images} image(s) with enhanced prompt")
results = []
for i in range(num_images):
# Set up generation parameters
current_seed = seed if seed is not None else torch.seed()
generator = torch.Generator(device=self.device).manual_seed(current_seed)
# Generate image
with torch.autocast(self.device) if self.device == "cuda" else torch.no_grad():
result = self.pipe(
enhanced_prompt,
height=height,
width=width,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
generator=generator
)
image = result.images[0]
# Create metadata
metadata = {
"timestamp": datetime.now().isoformat(),
"text_prompt": text_prompt,
"style": style,
"mood": mood,
"enhanced_prompt": enhanced_prompt,
"poetic_description": poetic_description,
"data_type": data_type,
"csv_path": csv_path,
"formula": formula,
"generation_params": {
"height": height,
"width": width,
"num_inference_steps": num_inference_steps,
"guidance_scale": guidance_scale,
"seed": current_seed,
"model": self.model_name
},
"device": self.device,
"phase": "2B_data_to_image"
}
# Add data features to metadata
if data_features:
metadata["data_features"] = data_features.to_dict()
# Generate filename
filename = self._generate_filename(
text_prompt, style, mood, current_seed, i + 1,
data_type=data_type
)
# Save image and metadata
image_path = self.output_dir / f"{filename}.png"
metadata_path = self.output_dir / f"{filename}_metadata.json"
image.save(image_path)
with open(metadata_path, 'w') as f:
json.dump(metadata, f, indent=2)
# Save data visualization if requested
data_viz_path = None
if save_data_visualization and data_visualization:
data_viz_path = self.output_dir / f"{filename}_data_viz.png"
data_visualization.save(data_viz_path)
results.append({
"image": image,
"image_path": str(image_path),
"metadata_path": str(metadata_path),
"data_visualization_path": str(data_viz_path) if data_viz_path else None,
"data_visualization": data_visualization,
"metadata": metadata,
"filename": filename,
"poetic_description": poetic_description
})
logger.info(f"Generated image {i+1}/{num_images}: {filename}")
return results
def _generate_filename(
self,
prompt: str,
style: str,
mood: str,
seed: int,
variation: int,
data_type: str = "none"
) -> str:
"""Generate descriptive filename following CompI conventions"""
# Create prompt slug (first 5 words)
prompt_words = prompt.lower().replace(',', '').split()[:5]
prompt_slug = "_".join(prompt_words)
# Create style and mood slugs
style_slug = style.replace(" ", "").replace(",", "")[:10] if style else "standard"
mood_slug = mood.replace(" ", "").replace(",", "")[:10] if mood else "neutral"
# Timestamp
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
# Data type indicator
data_tag = f"_{data_type.upper()}" if data_type != "none" else ""
# Combine all elements
filename = f"{prompt_slug}_{style_slug}_{mood_slug}_{timestamp}_seed{seed}{data_tag}_v{variation}"
return filename
def batch_process_csv_files(
self,
csv_directory: str,
text_prompt: str,
style: str = "",
mood: str = "",
**generation_kwargs
) -> List[Dict]:
"""
Process multiple CSV files in batch
Args:
csv_directory: Directory containing CSV files
text_prompt: Base text prompt for all generations
style: Art style
mood: Mood/atmosphere
**generation_kwargs: Additional generation parameters
Returns:
List of all generation results
"""
csv_dir = Path(csv_directory)
if not csv_dir.exists():
raise ValueError(f"CSV directory not found: {csv_directory}")
# Find CSV files
csv_files = list(csv_dir.glob("*.csv"))
if not csv_files:
raise ValueError(f"No CSV files found in {csv_directory}")
logger.info(f"Processing {len(csv_files)} CSV files")
all_results = []
for csv_file in csv_files:
logger.info(f"Processing: {csv_file.name}")
try:
results = self.generate_image(
text_prompt=text_prompt,
style=style,
mood=mood,
csv_path=str(csv_file),
**generation_kwargs
)
all_results.extend(results)
except Exception as e:
logger.error(f"Error processing {csv_file.name}: {e}")
continue
logger.info(f"Batch processing complete: {len(all_results)} images generated")
return all_results
def batch_process_formulas(
self,
formulas: List[str],
text_prompt: str,
style: str = "",
mood: str = "",
**generation_kwargs
) -> List[Dict]:
"""
Process multiple mathematical formulas in batch
Args:
formulas: List of mathematical formulas
text_prompt: Base text prompt for all generations
style: Art style
mood: Mood/atmosphere
**generation_kwargs: Additional generation parameters
Returns:
List of all generation results
"""
logger.info(f"Processing {len(formulas)} mathematical formulas")
all_results = []
for i, formula in enumerate(formulas):
logger.info(f"Processing formula {i+1}/{len(formulas)}: {formula}")
try:
results = self.generate_image(
text_prompt=text_prompt,
style=style,
mood=mood,
formula=formula,
**generation_kwargs
)
all_results.extend(results)
except Exception as e:
logger.error(f"Error processing formula '{formula}': {e}")
continue
logger.info(f"Batch processing complete: {len(all_results)} images generated")
return all_results