Comp-I / src /generators /compi_phase1e_style_generation.py
axrzce's picture
Deploy from GitHub main
338d95d verified
raw
history blame
13.4 kB
#!/usr/bin/env python3
"""
CompI Phase 1.E: Personal Style Generation with LoRA
Generate images using your trained LoRA personal style weights.
Usage:
python src/generators/compi_phase1e_style_generation.py --lora-path lora_models/my_style/checkpoint-1000
python src/generators/compi_phase1e_style_generation.py --help
"""
import os
import argparse
import json
from datetime import datetime
from pathlib import Path
from typing import Optional, List
import torch
from PIL import Image
from diffusers import StableDiffusionPipeline, DPMSolverMultistepScheduler
from peft import PeftModel
# -------- 1. CONFIGURATION --------
DEFAULT_MODEL = "runwayml/stable-diffusion-v1-5"
DEFAULT_STEPS = 30
DEFAULT_GUIDANCE = 7.5
DEFAULT_WIDTH = 512
DEFAULT_HEIGHT = 512
OUTPUT_DIR = "outputs"
# -------- 2. UTILITY FUNCTIONS --------
def setup_args():
"""Setup command line arguments."""
parser = argparse.ArgumentParser(
description="CompI Phase 1.E: Personal Style Generation with LoRA",
formatter_class=argparse.RawDescriptionHelpFormatter,
epilog="""
Examples:
# Generate with trained LoRA style
python %(prog)s --lora-path lora_models/my_style/checkpoint-1000 "a cat in my_style"
# Interactive mode
python %(prog)s --lora-path lora_models/my_style/checkpoint-1000 --interactive
# Multiple variations
python %(prog)s --lora-path lora_models/my_style/checkpoint-1000 "landscape" --variations 4
"""
)
parser.add_argument("prompt", nargs="*", help="Text prompt for generation")
parser.add_argument("--lora-path", required=True,
help="Path to trained LoRA checkpoint directory")
parser.add_argument("--model-name", default=DEFAULT_MODEL,
help=f"Base Stable Diffusion model (default: {DEFAULT_MODEL})")
parser.add_argument("--variations", "-v", type=int, default=1,
help="Number of variations to generate")
parser.add_argument("--steps", type=int, default=DEFAULT_STEPS,
help=f"Number of inference steps (default: {DEFAULT_STEPS})")
parser.add_argument("--guidance", type=float, default=DEFAULT_GUIDANCE,
help=f"Guidance scale (default: {DEFAULT_GUIDANCE})")
parser.add_argument("--width", type=int, default=DEFAULT_WIDTH,
help=f"Image width (default: {DEFAULT_WIDTH})")
parser.add_argument("--height", type=int, default=DEFAULT_HEIGHT,
help=f"Image height (default: {DEFAULT_HEIGHT})")
parser.add_argument("--seed", type=int,
help="Random seed for reproducible generation")
parser.add_argument("--negative", "-n", default="",
help="Negative prompt")
parser.add_argument("--lora-scale", type=float, default=1.0,
help="LoRA scale factor (0.0-2.0, default: 1.0)")
parser.add_argument("--interactive", "-i", action="store_true",
help="Interactive mode")
parser.add_argument("--output-dir", default=OUTPUT_DIR,
help=f"Output directory (default: {OUTPUT_DIR})")
parser.add_argument("--list-styles", action="store_true",
help="List available LoRA styles")
return parser.parse_args()
def load_lora_info(lora_path: str) -> dict:
"""Load LoRA training information."""
lora_dir = Path(lora_path)
# Try to find training info
info_files = [
lora_dir / "training_info.json",
lora_dir.parent / "training_info.json"
]
for info_file in info_files:
if info_file.exists():
with open(info_file) as f:
return json.load(f)
# Fallback info
return {
'style_name': lora_dir.parent.name,
'model_name': DEFAULT_MODEL,
'lora_rank': 4,
'lora_alpha': 32
}
def load_pipeline_with_lora(model_name: str, lora_path: str, device: str):
"""Load Stable Diffusion pipeline with LoRA weights."""
print(f"πŸ”„ Loading base model: {model_name}")
# Load base pipeline
pipe = StableDiffusionPipeline.from_pretrained(
model_name,
torch_dtype=torch.float16 if device == "cuda" else torch.float32,
safety_checker=None,
requires_safety_checker=False
)
# Use DPM solver for faster inference
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
print(f"🎨 Loading LoRA weights from: {lora_path}")
# Load LoRA weights
lora_dir = Path(lora_path)
if not lora_dir.exists():
raise FileNotFoundError(f"LoRA path not found: {lora_path}")
# Apply LoRA to UNet
pipe.unet = PeftModel.from_pretrained(pipe.unet, lora_path)
# Move to device
pipe = pipe.to(device)
# Enable memory efficient attention if available
if hasattr(pipe, "enable_xformers_memory_efficient_attention"):
try:
pipe.enable_xformers_memory_efficient_attention()
except Exception:
pass
return pipe
def generate_with_style(
pipe,
prompt: str,
negative_prompt: str = "",
num_inference_steps: int = DEFAULT_STEPS,
guidance_scale: float = DEFAULT_GUIDANCE,
width: int = DEFAULT_WIDTH,
height: int = DEFAULT_HEIGHT,
seed: Optional[int] = None,
lora_scale: float = 1.0
):
"""Generate image with LoRA style."""
# Set LoRA scale
if hasattr(pipe.unet, 'set_adapter_scale'):
pipe.unet.set_adapter_scale(lora_scale)
# Setup generator
if seed is not None:
generator = torch.Generator(device=pipe.device).manual_seed(seed)
else:
generator = None
seed = torch.seed()
# Generate image
with torch.autocast(pipe.device.type):
result = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
width=width,
height=height,
generator=generator
)
return result.images[0], seed
def save_generated_image(
image: Image.Image,
prompt: str,
style_name: str,
seed: int,
variation: int,
output_dir: str,
metadata: dict = None
):
"""Save generated image with metadata."""
# Create output directory
os.makedirs(output_dir, exist_ok=True)
# Generate filename
prompt_slug = "_".join(prompt.lower().split()[:5])
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
filename = f"{prompt_slug[:25]}_lora_{style_name}_{timestamp}_seed{seed}_v{variation}.png"
filepath = os.path.join(output_dir, filename)
# Save image
image.save(filepath)
# Save metadata if provided
if metadata:
metadata_file = filepath.replace('.png', '_metadata.json')
with open(metadata_file, 'w') as f:
json.dump(metadata, f, indent=2)
return filepath
def list_available_styles():
"""List available LoRA styles."""
lora_dir = Path("lora_models")
if not lora_dir.exists():
print("❌ No LoRA models directory found")
return
print("🎨 Available LoRA Styles:")
print("=" * 40)
styles_found = False
for style_dir in lora_dir.iterdir():
if style_dir.is_dir():
# Look for checkpoints
checkpoints = list(style_dir.glob("checkpoint-*"))
if checkpoints:
styles_found = True
latest_checkpoint = max(checkpoints, key=lambda x: int(x.name.split('-')[1]))
# Load info if available
info_file = style_dir / "training_info.json"
if info_file.exists():
with open(info_file) as f:
info = json.load(f)
print(f"πŸ“ {style_dir.name}")
print(f" Latest: {latest_checkpoint.name}")
print(f" Steps: {info.get('total_steps', 'unknown')}")
print(f" Model: {info.get('model_name', 'unknown')}")
else:
print(f"πŸ“ {style_dir.name}")
print(f" Latest: {latest_checkpoint.name}")
print()
if not styles_found:
print("❌ No trained LoRA styles found")
print("πŸ’‘ Train a style first using: python src/generators/compi_phase1e_lora_training.py")
def interactive_generation(pipe, lora_info: dict, args):
"""Interactive generation mode."""
style_name = lora_info.get('style_name', 'custom')
print(f"🎨 Interactive LoRA Style Generation - {style_name}")
print("=" * 50)
print("πŸ’‘ Tips:")
print(f" - Include '{style_name}' or trigger words in your prompts")
print(f" - Adjust LoRA scale (0.0-2.0) to control style strength")
print(" - Type 'quit' to exit")
print()
while True:
try:
# Get prompt
prompt = input("Enter prompt: ").strip()
if not prompt or prompt.lower() == 'quit':
break
# Get optional parameters
variations = input(f"Variations (default: 1): ").strip()
variations = int(variations) if variations.isdigit() else 1
lora_scale = input(f"LoRA scale (default: {args.lora_scale}): ").strip()
lora_scale = float(lora_scale) if lora_scale else args.lora_scale
# Generate images
print(f"🎨 Generating {variations} variation(s)...")
for i in range(variations):
image, seed = generate_with_style(
pipe, prompt, args.negative,
args.steps, args.guidance,
args.width, args.height,
args.seed, lora_scale
)
# Save image
filepath = save_generated_image(
image, prompt, style_name, seed, i + 1, args.output_dir,
{
'prompt': prompt,
'negative_prompt': args.negative,
'style_name': style_name,
'lora_scale': lora_scale,
'seed': seed,
'steps': args.steps,
'guidance_scale': args.guidance,
'timestamp': datetime.now().isoformat()
}
)
print(f"βœ… Saved: {filepath}")
print()
except KeyboardInterrupt:
break
except Exception as e:
print(f"❌ Error: {e}")
print()
def main():
"""Main function."""
args = setup_args()
# List styles if requested
if args.list_styles:
list_available_styles()
return 0
# Check LoRA path
if not os.path.exists(args.lora_path):
print(f"❌ LoRA path not found: {args.lora_path}")
return 1
# Load LoRA info
lora_info = load_lora_info(args.lora_path)
style_name = lora_info.get('style_name', 'custom')
print(f"🎨 CompI Phase 1.E: Personal Style Generation")
print(f"Style: {style_name}")
print("=" * 50)
# Setup device
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"πŸ–₯️ Using device: {device}")
# Load pipeline
try:
pipe = load_pipeline_with_lora(args.model_name, args.lora_path, device)
print("βœ… Pipeline loaded successfully")
except Exception as e:
print(f"❌ Failed to load pipeline: {e}")
return 1
# Interactive mode
if args.interactive:
interactive_generation(pipe, lora_info, args)
return 0
# Command line mode
prompt = " ".join(args.prompt) if args.prompt else input("Enter prompt: ").strip()
if not prompt:
print("❌ No prompt provided")
return 1
print(f"🎨 Generating {args.variations} variation(s) for: {prompt}")
# Generate images
for i in range(args.variations):
try:
image, seed = generate_with_style(
pipe, prompt, args.negative,
args.steps, args.guidance,
args.width, args.height,
args.seed, args.lora_scale
)
# Save image
filepath = save_generated_image(
image, prompt, style_name, seed, i + 1, args.output_dir,
{
'prompt': prompt,
'negative_prompt': args.negative,
'style_name': style_name,
'lora_scale': args.lora_scale,
'seed': seed,
'steps': args.steps,
'guidance_scale': args.guidance,
'timestamp': datetime.now().isoformat()
}
)
print(f"βœ… Generated variation {i + 1}: {filepath}")
except Exception as e:
print(f"❌ Error generating variation {i + 1}: {e}")
print("πŸŽ‰ Generation complete!")
return 0
if __name__ == "__main__":
exit(main())