|
|
|
|
|
import os |
|
import sys |
|
import torch |
|
from datetime import datetime |
|
from diffusers import StableDiffusionPipeline |
|
from PIL import Image |
|
|
|
|
|
sys.path.append(os.path.join(os.path.dirname(__file__), '..', '..')) |
|
|
|
|
|
|
|
|
|
if torch.cuda.is_available(): |
|
device = "cuda" |
|
print("CUDA GPU detected. Running on GPU for best performance.") |
|
else: |
|
device = "cpu" |
|
print("No CUDA GPU detected. Running on CPU. Generation will be slow.") |
|
|
|
|
|
OUTPUT_DIR = os.path.join(os.path.dirname(__file__), '..', '..', "outputs") |
|
os.makedirs(OUTPUT_DIR, exist_ok=True) |
|
|
|
|
|
def log(msg): |
|
now = datetime.now().strftime("[%Y-%m-%d %H:%M:%S]") |
|
print(f"{now} {msg}") |
|
|
|
|
|
|
|
MODEL_NAME = "runwayml/stable-diffusion-v1-5" |
|
log(f"Loading model: {MODEL_NAME} (this may take a minute on first run)") |
|
|
|
|
|
def dummy_safety_checker(images, **kwargs): |
|
return images, [False] * len(images) |
|
|
|
try: |
|
pipe = StableDiffusionPipeline.from_pretrained( |
|
MODEL_NAME, |
|
torch_dtype=torch.float16 if device == "cuda" else torch.float32, |
|
safety_checker=dummy_safety_checker, |
|
) |
|
except Exception as e: |
|
log(f"Error loading model: {e}") |
|
sys.exit(1) |
|
|
|
pipe = pipe.to(device) |
|
pipe.enable_attention_slicing() |
|
|
|
log("Model loaded successfully.") |
|
|
|
|
|
|
|
def main(): |
|
"""Main function for command-line execution""" |
|
if len(sys.argv) > 1: |
|
prompt = " ".join(sys.argv[1:]) |
|
log(f"Prompt taken from command line: {prompt}") |
|
else: |
|
prompt = input("Enter your prompt (e.g. 'A magical forest, digital art'): ").strip() |
|
log(f"Prompt entered: {prompt}") |
|
|
|
if not prompt: |
|
log("No prompt provided. Exiting.") |
|
sys.exit(0) |
|
|
|
|
|
|
|
SEED = torch.seed() |
|
generator = torch.manual_seed(SEED) if device == "cpu" else torch.Generator(device).manual_seed(torch.seed()) |
|
|
|
num_inference_steps = 30 |
|
guidance_scale = 7.5 |
|
|
|
|
|
height = 512 |
|
width = 512 |
|
|
|
|
|
|
|
log(f"Generating image for prompt: {prompt}") |
|
log(f"Params: steps={num_inference_steps}, guidance_scale={guidance_scale}, seed={SEED}") |
|
|
|
with torch.autocast(device) if device == "cuda" else torch.no_grad(): |
|
result = pipe( |
|
prompt, |
|
height=height, |
|
width=width, |
|
num_inference_steps=num_inference_steps, |
|
guidance_scale=guidance_scale, |
|
generator=generator, |
|
) |
|
|
|
image: Image.Image = result.images[0] |
|
|
|
|
|
|
|
|
|
prompt_slug = "_".join(prompt.lower().split()[:6]) |
|
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") |
|
filename = f"{prompt_slug[:40]}_{timestamp}_seed{SEED}.png" |
|
filepath = os.path.join(OUTPUT_DIR, filename) |
|
image.save(filepath) |
|
log(f"Image saved to {filepath}") |
|
|
|
|
|
|
|
|
|
|
|
log("Generation complete.") |
|
|
|
if __name__ == "__main__": |
|
main() |
|
|