File size: 69,317 Bytes
338d95d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 |
#!/usr/bin/env python3
"""
CompI Phase 3 Final Dashboard - Complete Integration (3.A → 3.E)
This is the ultimate CompI interface that integrates ALL Phase 3 components:
- Phase 3.A/3.B: True multimodal fusion with real processing
- Phase 3.C: Advanced references with role assignment and live ControlNet previews
- Phase 3.D: Professional workflow management (gallery, presets, export)
- Phase 3.E: Performance management and model switching
Features:
- All multimodal inputs (Text, Audio, Data, Emotion, Real-time, Multi-Reference)
- Advanced References: multi-image upload/URLs, style vs structure roles, ControlNet with live previews
- Model & Performance: SD 1.5/SDXL switching, LoRA integration, VRAM monitoring, OOM auto-retry
- Workflow & Export: gallery, filters, rating/tags/notes, presets save/load, portable export ZIP
- True fusion engine: real processing for all inputs, intelligent generation mode selection
"""
import os
import io
import csv
import json
import zipfile
import shutil
import platform
import requests
from datetime import datetime
from pathlib import Path
from typing import Optional, Dict, List
import numpy as np
import pandas as pd
import streamlit as st
from PIL import Image
import torch
# --- Diffusers base (txt2img, img2img) ---
from diffusers import (
StableDiffusionPipeline,
StableDiffusionImg2ImgPipeline,
)
# --- ControlNet (optional, with graceful fallback) ---
HAS_CONTROLNET = True
CN_IMG2IMG_AVAILABLE = True
try:
from diffusers import (
StableDiffusionControlNetPipeline,
StableDiffusionControlNetImg2ImgPipeline,
ControlNetModel,
)
except Exception:
HAS_CONTROLNET = False
CN_IMG2IMG_AVAILABLE = False
# --- SDXL & Upscaler (optional) ---
HAS_SDXL = True
HAS_UPSCALER = True
try:
from diffusers import StableDiffusionXLPipeline
except Exception:
HAS_SDXL = False
try:
from diffusers import StableDiffusionLatentUpscalePipeline
except Exception:
HAS_UPSCALER = False
# --- Audio, Emotion, Real-time, Plots, Previews ---
def _lazy_install(pkgs: str):
"""Install packages on demand"""
os.system(f"pip install -q {pkgs}")
try:
import librosa
import soundfile as sf
except Exception:
_lazy_install("librosa soundfile")
import librosa
import soundfile as sf
try:
import whisper
except Exception:
_lazy_install("git+https://github.com/openai/whisper.git")
import whisper
try:
from textblob import TextBlob
except Exception:
_lazy_install("textblob")
from textblob import TextBlob
try:
import feedparser
except Exception:
_lazy_install("feedparser")
import feedparser
try:
import matplotlib.pyplot as plt
except Exception:
_lazy_install("matplotlib")
import matplotlib.pyplot as plt
try:
import cv2
except Exception:
_lazy_install("opencv-python-headless")
import cv2
# ==================== CONSTANTS & PATHS ====================
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
# Directory structure
OUTPUT_DIR = Path("outputs")
OUTPUT_DIR.mkdir(parents=True, exist_ok=True)
EXPORTS_DIR = Path("exports")
EXPORTS_DIR.mkdir(parents=True, exist_ok=True)
PRESETS_DIR = Path("presets")
PRESETS_DIR.mkdir(parents=True, exist_ok=True)
# Log files for different phases
RUNLOG = OUTPUT_DIR / "phase3_run_log.csv" # fusion logs (3.B)
RUNLOG_3C = OUTPUT_DIR / "phase3c_runs.csv" # advanced ref logs (3.C)
RUNLOG_3E = OUTPUT_DIR / "phase3e_runlog.csv" # perf/model logs (3.E)
ANNOT_CSV = OUTPUT_DIR / "phase3d_annotations.csv" # annotations (3.D)
# ==================== UTILITY FUNCTIONS ====================
def slugify(s: str, n=30):
"""Create safe filename from string"""
if not s:
return "none"
return "_".join(s.lower().split())[:n]
def save_image(img: Image.Image, name: str) -> str:
"""Save image to outputs directory"""
p = OUTPUT_DIR / name
img.save(p)
return str(p)
def vram_gb() -> Optional[float]:
"""Get total VRAM in GB"""
if DEVICE == "cuda":
try:
return torch.cuda.get_device_properties(0).total_memory / (1024**3)
except Exception:
return None
return None
def vram_used_gb() -> Optional[float]:
"""Get used VRAM in GB"""
if DEVICE == "cuda":
try:
torch.cuda.synchronize()
return torch.cuda.memory_allocated() / (1024**3)
except Exception:
return None
return None
def attempt_enable_xformers(pipe):
"""Try to enable xFormers memory efficient attention"""
try:
pipe.enable_xformers_memory_efficient_attention()
return True
except Exception:
return False
def apply_perf(pipe, attn_slice=True, vae_slice=True, vae_tile=False):
"""Apply performance optimizations to pipeline"""
if attn_slice:
pipe.enable_attention_slicing()
if vae_slice:
try:
pipe.enable_vae_slicing()
except Exception:
pass
if vae_tile:
try:
pipe.enable_vae_tiling()
except Exception:
pass
def safe_retry_sizes(h, w, steps):
"""Generate progressive fallback sizes for OOM recovery"""
sizes = [
(h, w, steps),
(max(384, h//2), max(384, w//2), max(steps-8, 12)),
(384, 384, max(steps-12, 12)),
(256, 256, max(steps-16, 10)),
]
seen = set()
for it in sizes:
if it not in seen:
seen.add(it)
yield it
def canny_map(img: Image.Image) -> Image.Image:
"""Create Canny edge map from image"""
arr = np.array(img.convert("RGB"))
edges = cv2.Canny(arr, 100, 200)
edges_rgb = cv2.cvtColor(edges, cv2.COLOR_GRAY2RGB)
return Image.fromarray(edges_rgb)
def depth_proxy(img: Image.Image) -> Image.Image:
"""Create depth-like proxy using grayscale"""
gray = img.convert("L")
return Image.merge("RGB", (gray, gray, gray))
def save_plot(fig) -> Image.Image:
"""Save matplotlib figure as PIL Image"""
buf = io.BytesIO()
fig.savefig(buf, format="png", bbox_inches="tight")
plt.close(fig)
buf.seek(0)
return Image.open(buf).convert("RGB")
def env_snapshot() -> Dict:
"""Create environment snapshot for reproducibility"""
import sys
try:
import importlib.metadata as im
except Exception:
import importlib_metadata as im
pkgs = {}
for pkg in ["torch", "diffusers", "transformers", "accelerate", "opencv-python-headless",
"librosa", "whisper", "textblob", "pandas", "numpy", "matplotlib",
"feedparser", "streamlit", "Pillow"]:
try:
pkgs[pkg] = im.version(pkg)
except Exception:
pass
return {
"timestamp": datetime.now().isoformat(),
"python_version": sys.version,
"platform": platform.platform(),
"packages": pkgs
}
def mk_readme(bundle_meta: Dict, df_meta: pd.DataFrame) -> str:
"""Generate README for export bundle"""
L = []
L.append(f"# CompI Export — {bundle_meta['bundle_name']}\n")
L.append(f"_Created: {bundle_meta['created_at']}_\n")
L += [
"## What's inside",
"- Selected images",
"- `manifest.json` (environment + settings)",
"- `metadata.csv` (merged logs)",
"- `annotations.csv` (ratings/tags/notes)",
]
if bundle_meta.get("preset"):
L.append("- `preset.json` (saved generation settings)")
L.append("\n## Summary of selected runs")
if not df_meta.empty and "mode" in df_meta.columns:
counts = df_meta["mode"].value_counts().to_dict()
L.append("Modes:")
for k, v in counts.items():
L.append(f"- {k}: {v}")
L.append("\n## Reproducing")
L.append("1. Install versions in `manifest.json`.")
L.append("2. Use `preset.json` or copy prompt/params from `metadata.csv`.")
L.append("3. Run the dashboard with these settings.")
return "\n".join(L)
# ==================== CACHED MODEL LOADERS ====================
@st.cache_resource(show_spinner=True)
def load_sd15(txt2img=True):
"""Load Stable Diffusion 1.5 pipeline"""
if txt2img:
pipe = StableDiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5",
safety_checker=None,
torch_dtype=torch.float16 if DEVICE == "cuda" else torch.float32,
)
else:
pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5",
safety_checker=None,
torch_dtype=torch.float16 if DEVICE == "cuda" else torch.float32,
)
return pipe.to(DEVICE)
@st.cache_resource(show_spinner=True)
def load_sdxl():
"""Load SDXL pipeline"""
if not HAS_SDXL:
return None
pipe = StableDiffusionXLPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
safety_checker=None,
torch_dtype=torch.float16 if DEVICE == "cuda" else torch.float32,
)
return pipe.to(DEVICE)
@st.cache_resource(show_spinner=True)
def load_upscaler():
"""Load latent upscaler pipeline"""
if not HAS_UPSCALER:
return None
up = StableDiffusionLatentUpscalePipeline.from_pretrained(
"stabilityai/sd-x2-latent-upscaler",
safety_checker=None,
torch_dtype=torch.float16 if DEVICE == "cuda" else torch.float32,
)
return up.to(DEVICE)
@st.cache_resource(show_spinner=True)
def load_controlnet(cn_type: str):
"""Load ControlNet pipeline"""
if not HAS_CONTROLNET:
return None
cn_id = "lllyasviel/sd-controlnet-canny" if cn_type == "Canny" else "lllyasviel/sd-controlnet-depth"
controlnet = ControlNetModel.from_pretrained(
cn_id, torch_dtype=torch.float16 if DEVICE == "cuda" else torch.float32
)
pipe = StableDiffusionControlNetPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5",
controlnet=controlnet,
safety_checker=None,
torch_dtype=torch.float16 if DEVICE == "cuda" else torch.float32,
).to(DEVICE)
try:
pipe.enable_xformers_memory_efficient_attention()
except Exception:
pass
pipe.enable_attention_slicing()
return pipe
@st.cache_resource(show_spinner=True)
def load_controlnet_img2img(cn_type: str):
"""Load ControlNet + Img2Img hybrid pipeline"""
global CN_IMG2IMG_AVAILABLE
if not HAS_CONTROLNET:
return None
try:
cn_id = "lllyasviel/sd-controlnet-canny" if cn_type == "Canny" else "lllyasviel/sd-controlnet-depth"
controlnet = ControlNetModel.from_pretrained(
cn_id, torch_dtype=torch.float16 if DEVICE == "cuda" else torch.float32
)
pipe = StableDiffusionControlNetImg2ImgPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5",
controlnet=controlnet,
safety_checker=None,
torch_dtype=torch.float16 if DEVICE == "cuda" else torch.float32,
).to(DEVICE)
try:
pipe.enable_xformers_memory_efficient_attention()
except Exception:
pass
pipe.enable_attention_slicing()
return pipe
except Exception:
CN_IMG2IMG_AVAILABLE = False
return None
# ==================== STREAMLIT LAYOUT ====================
st.set_page_config(page_title="CompI — Phase 3 Final Dashboard", layout="wide")
st.title("🧪 CompI — Final Integrated Dashboard (3.A → 3.E)")
# ---- Minimal, clean UI styling ----
def inject_minimal_css():
st.markdown(
"""
<style>
.block-container {padding-top: 1.2rem; padding-bottom: 2rem; max-width: 1200px;}
.stTabs [role="tablist"] {gap: 6px;}
.stTabs [role="tab"] {padding: 6px 10px; border-radius: 8px; background: rgba(255,255,255,0.02); border: 1px solid rgba(255,255,255,0.08);}
.stTabs [aria-selected="true"] {background: rgba(255,255,255,0.04); border-color: rgba(255,255,255,0.16);}
h1, h2, h3 {margin-bottom: .3rem;}
.section {padding: 14px 16px; border: 1px solid rgba(255,255,255,0.08); border-radius: 12px; background: rgba(255,255,255,0.02); margin-bottom: 14px;}
.muted {color: rgba(255,255,255,0.6); text-transform: uppercase; letter-spacing: .08em; font-size: .75rem; margin-bottom: .25rem;}
.stButton>button {border-radius: 10px; height: 44px;}
.stButton>button[kind="primary"] {background: #2563eb; border-color: #2563eb;}
.stTextInput input, .stTextArea textarea {border-radius: 10px;}
.stMultiSelect [data-baseweb="tag"] {border-radius: 8px;}
pre, code {border-radius: 10px;}
#MainMenu, footer {visibility: hidden;}
</style>
""",
unsafe_allow_html=True,
)
# Apply minimal styling early
inject_minimal_css()
# Top metrics (Phase 3.E VRAM monitoring)
colA, colB, colC, colD = st.columns(4)
with colA:
st.metric("Device", DEVICE)
with colB:
st.metric("VRAM (GB)", f"{vram_gb():.2f}" if vram_gb() else "N/A")
with colC:
st.metric("Used VRAM (GB)", f"{vram_used_gb():.2f}" if vram_used_gb() else "N/A")
with colD:
st.caption(f"PyTorch {torch.__version__} • diffusers ready")
# Handle deferred clear request BEFORE creating any widgets
if st.session_state.get("clear_inputs", False):
# Pop ALL relevant input/widget keys so widgets re-initialize to defaults
keys_to_clear = [
# Text inputs
"main_prompt_input", "style_input", "mood_input", "neg_prompt_input", "style_ms", "mood_ms",
# Optional text areas
"emo_free_textarea", "ref_urls_textarea",
# Uploaders & inputs
"audio_file_uploader", "data_file_uploader", "formula_input", "ref_images_uploader",
# Toggles / checkboxes / selects / sliders (with explicit keys)
"enable_emo_checkbox", "enable_rt_checkbox", "enable_ref_checkbox",
"model_choice_selectbox", "gen_mode_selectbox",
"use_lora_checkbox", "lora_path_input", "lora_scale_slider",
"width_input", "height_input", "steps_input", "guidance_input",
"batch_input", "seed_input", "upsample_checkbox",
"use_xformers_checkbox", "attn_slice_checkbox", "vae_slice_checkbox", "vae_tile_checkbox",
"oom_retry_checkbox",
# Real-time extras
"city_input", "headlines_slider",
]
for k in keys_to_clear:
st.session_state.pop(k, None)
# Clear outputs/state
st.session_state["generated_images"] = []
st.session_state["generation_results"] = []
# Unset the flag and rerun
st.session_state["clear_inputs"] = False
# Main tabs - Complete Phase 3 integration
# Moved generation below Inputs per UX request; removed separate Generate tab
tab_inputs, tab_refs, tab_model, tab_gallery, tab_presets, tab_export = st.tabs([
"🧩 Inputs (Text/Audio/Data/Emotion/Real‑time)",
"🖼️ Advanced References",
"⚙️ Model & Performance",
"🖼️ Gallery & Annotate",
"💾 Presets",
"📦 Export"
])
# ==================== INPUTS TAB (Phase 3.A/3.B) ====================
with tab_inputs:
st.markdown("<div class='section'>", unsafe_allow_html=True)
st.subheader("🧩 Multimodal Inputs")
# Text & Style (always enabled)
st.markdown("<div class='muted'>Text & Style</div>", unsafe_allow_html=True)
main_prompt = st.text_input(
"Main prompt",
value=st.session_state.get("main_prompt_input", ""),
placeholder="A serene cyberpunk alley at dawn",
key="main_prompt_input",
)
# Style and Mood as multi-select dropdowns
STYLE_OPTIONS = [
"digital painting", "watercolor", "oil painting", "pixel art", "anime",
"3D render", "photorealistic", "line art", "low poly", "cyberpunk",
"isometric", "concept art", "cel shading", "comic book", "impressionist"
]
MOOD_OPTIONS = [
"dreamy", "luminous", "dark and moody", "whimsical", "serene",
"epic", "melancholic", "vibrant", "mysterious", "dystopian",
"hopeful", "playful", "contemplative", "energetic", "ethereal"
]
style_selected = st.multiselect(
"Style (choose one or more)",
options=STYLE_OPTIONS,
default=st.session_state.get("style_ms", []),
key="style_ms",
help="Pick one or more styles to condition the artwork"
)
mood_selected = st.multiselect(
"Mood (choose one or more)",
options=MOOD_OPTIONS,
default=st.session_state.get("mood_ms", []),
key="mood_ms",
help="Pick one or more moods to influence the atmosphere"
)
# Join lists into strings for downstream prompt fusion
style = ", ".join(style_selected)
mood = ", ".join(mood_selected)
neg_prompt = st.text_input(
"Negative prompt (optional)",
value=st.session_state.get("neg_prompt_input", ""),
placeholder="e.g., low quality, bad anatomy",
key="neg_prompt_input",
)
st.markdown("</div>", unsafe_allow_html=True)
# Four columns for aligned sections
col1, col2, col3, col4 = st.columns(4)
# AUDIO PROCESSING (Phase 2.A)
with col1:
st.markdown("### 🎵 Audio Analysis")
enable_audio = st.checkbox("Enable Audio Processing", value=False)
audio_caption = ""
audio_tags = []
tempo = None
if enable_audio:
audio_file = st.file_uploader("Upload audio (.wav/.mp3)", type=["wav", "mp3"], key="audio_file_uploader")
if audio_file:
# Save temporary audio file
audio_path = OUTPUT_DIR / "tmp_audio.wav"
with open(audio_path, "wb") as f:
f.write(audio_file.read())
# Load and analyze audio
y, sr = librosa.load(audio_path.as_posix(), sr=16000)
dur = librosa.get_duration(y=y, sr=sr)
st.caption(f"Duration: {dur:.1f}s")
# Extract tempo
try:
tempo, _ = librosa.beat.beat_track(y=y, sr=sr)
except Exception:
tempo = None
# Extract audio features
rms = float(np.sqrt(np.mean(y**2)))
zcr = float(np.mean(librosa.feature.zero_crossing_rate(y)))
# Generate audio tags based on features
if tempo:
if tempo < 90:
audio_tags.append("slow tempo")
elif tempo > 140:
audio_tags.append("fast tempo")
if rms > 0.04:
audio_tags.append("energetic")
if zcr > 0.12:
audio_tags.append("percussive")
# Whisper transcription
st.info("Transcribing audio (Whisper base)…")
w = whisper.load_model("base", device=DEVICE)
wav = whisper.load_audio(audio_path.as_posix())
wav = whisper.pad_or_trim(wav)
mel = whisper.log_mel_spectrogram(wav).to(DEVICE)
dec = whisper.DecodingOptions(language="en", fp16=(DEVICE=="cuda"))
res = whisper.decode(w, mel, dec)
audio_caption = res.text.strip()
st.success(f"Caption: '{audio_caption}'")
if audio_tags:
st.write("Audio tags:", ", ".join(audio_tags))
# DATA PROCESSING (Phase 2.B)
with col2:
st.markdown("### 📊 Data Analysis")
enable_data = st.checkbox("Enable Data Processing", value=False)
data_summary = ""
data_plot = None
if enable_data:
data_file = st.file_uploader("Upload CSV", type=["csv"], key="data_file_uploader")
formula = st.text_input("Or numpy formula", placeholder="np.sin(np.linspace(0, 20, 200))", key="formula_input")
if data_file is not None:
df = pd.read_csv(data_file)
st.dataframe(df.head(), use_container_width=True)
# Analyze numeric columns
num = df.select_dtypes(include=np.number)
if not num.empty:
means, mins, maxs, stds = num.mean(), num.min(), num.max(), num.std()
data_summary = f"{len(num)} rows x {num.shape[1]} cols; " + " ".join([
f"{c}: avg {means[c]:.2f}, min {mins[c]:.2f}, max {maxs[c]:.2f}."
for c in num.columns[:3]
])
data_summary += " Variability " + ("high." if stds.mean() > 1 else "gentle.")
# Create visualization
fig = plt.figure(figsize=(6, 3))
if num.shape[1] == 1:
plt.plot(num.iloc[:, 0])
plt.title(f"Pattern: {num.columns[0]}")
else:
plt.plot(num.iloc[:, 0], label=num.columns[0])
plt.plot(num.iloc[:, 1], label=num.columns[1])
plt.legend()
plt.title("Data Patterns")
plt.tight_layout()
data_plot = save_plot(fig)
st.image(data_plot, caption="Data pattern")
elif formula.strip():
try:
arr = eval(formula, {"np": np, "__builtins__": {}})
arr = np.array(arr)
data_summary = f"Mathematical pattern with {arr.size} points."
fig = plt.figure(figsize=(6, 3))
plt.plot(arr)
plt.title("Formula Pattern")
plt.tight_layout()
data_plot = save_plot(fig)
st.image(data_plot, caption="Formula pattern")
except Exception as e:
st.error(f"Formula error: {e}")
# EMOTION (Phase 2.C)
with col3:
st.markdown("### 💭 Emotion Analysis")
enable_emo = st.checkbox("Enable Emotion Processing", value=False, key="enable_emo_checkbox")
emo_free = st.text_area(
"Describe a feeling/context",
value=st.session_state.get("emo_free_textarea", ""),
key="emo_free_textarea",
) if enable_emo else ""
emo_label = ""
if enable_emo and emo_free.strip():
tb = TextBlob(emo_free)
pol = tb.sentiment.polarity
emo_label = "positive, uplifting" if pol > 0.3 else (
"sad, melancholic" if pol < -0.3 else "neutral, contemplative"
)
st.info(f"Sentiment: {emo_label} (polarity {pol:.2f})")
# REAL-TIME (Phase 2.D)
with col4:
st.markdown("### 🌎 Real-time Data")
enable_rt = st.checkbox("Enable Real-time Feeds", value=False, key="enable_rt_checkbox")
rt_context = ""
if enable_rt:
city = st.text_input("City (weather)", "Toronto", key="city_input")
headlines_num = st.slider("Headlines", 1, 5, 3, key="headlines_slider")
def get_weather(city):
try:
key = st.secrets.get("OPENWEATHER_KEY", None) if hasattr(st, "secrets") else None
url = "https://api.openweathermap.org/data/2.5/weather"
params = {
"q": city,
"units": "metric",
"appid": key or "9a524f695a4940f392150142250107"
}
r = requests.get(url, params=params, timeout=6).json()
return f"{r['weather'][0]['description']}, {r['main']['temp']:.1f}°C"
except Exception as e:
return f"unavailable ({e})"
def get_news(n):
try:
feed = feedparser.parse("https://feeds.bbci.co.uk/news/rss.xml")
return "; ".join([e["title"] for e in feed.entries[:n]])
except Exception as e:
return f"unavailable ({e})"
w = get_weather(city)
n = get_news(headlines_num)
st.caption(f"Weather: {w}")
st.caption(f"News: {n}")
rt_context = f"Current weather in {city}: {w}. Today's news: {n}."
# ==================== ADVANCED REFERENCES TAB (Phase 3.C) ====================
with tab_refs:
st.subheader("🖼️ Advanced Multi‑Reference + ControlNet")
enable_ref = st.checkbox("Enable Multi-Reference Processing", value=False, key="enable_ref_checkbox")
ref_images: List[Image.Image] = []
style_idxs = []
cn_images = []
img2img_strength = 0.55
cn_type = "Canny"
cn_scale = 1.0
if enable_ref:
# Multi-reference upload (files + URLs)
colU, colURL = st.columns(2)
with colU:
st.markdown("**📁 Upload Images**")
uploads = st.file_uploader(
"Upload reference images",
type=["png", "jpg", "jpeg"],
accept_multiple_files=True,
key="ref_images_uploader"
)
if uploads:
for u in uploads:
try:
im = Image.open(u).convert("RGB")
ref_images.append(im)
except Exception as e:
st.warning(f"Upload failed: {e}")
with colURL:
st.markdown("**🔗 Image URLs**")
block = st.text_area(
"Paste image URLs (one per line)",
value=st.session_state.get("ref_urls_textarea", ""),
key="ref_urls_textarea",
)
if block.strip():
for line in block.splitlines():
url = line.strip()
if not url:
continue
try:
r = requests.get(url, timeout=8)
if r.status_code == 200:
im = Image.open(io.BytesIO(r.content)).convert("RGB")
ref_images.append(im)
except Exception as e:
st.warning(f"URL failed: {e}")
if ref_images:
# Display reference images
st.image(
ref_images,
width=180,
caption=[f"Ref {i+1}" for i in range(len(ref_images))]
)
# Role-based assignment (Phase 3.C key feature)
st.markdown("### 🎨 Reference Role Assignment")
style_idxs = st.multiselect(
"Use as **Style References (img2img)**",
list(range(1, len(ref_images)+1)),
default=list(range(1, len(ref_images)+1)),
help="These images will influence the artistic style and mood"
)
# ControlNet structure conditioning
use_cn = st.checkbox("Use **ControlNet** for structure", value=HAS_CONTROLNET)
if use_cn and not HAS_CONTROLNET:
st.warning("ControlNet not available in this environment.")
use_cn = False
if use_cn:
cn_type = st.selectbox("ControlNet type", ["Canny", "Depth"], index=0)
pick = st.selectbox(
"Pick **one** structural reference",
list(range(1, len(ref_images)+1)),
index=0,
help="This image will control the composition and structure"
)
# Live ControlNet preview (Phase 3.C key feature)
base = ref_images[int(pick)-1].resize((512, 512))
cn_map = canny_map(base) if cn_type == "Canny" else depth_proxy(base)
st.markdown("**🔍 Live ControlNet Preview**")
st.image(
[base, cn_map],
width=240,
caption=["Selected Reference", f"{cn_type} Map"]
)
cn_images = [cn_map]
cn_scale = st.slider("ControlNet conditioning scale", 0.1, 2.0, 1.0, 0.05)
# Style strength control
img2img_strength = st.slider(
"img2img strength (style adherence)",
0.2, 0.85, 0.55, 0.05,
help="Higher values follow style references more closely"
)
# ==================== MODEL & PERFORMANCE TAB (Phase 3.E) ====================
with tab_model:
st.subheader("⚙️ Model & Performance Management")
st.caption("Choose a base model, optional style add‑ons (LoRA), and tune speed/quality settings.")
# Presets and Glossary helpers
@st.dialog("Glossary: Common terms")
def show_glossary():
st.markdown(
"""
- Base model: The foundation that generates images (SD 1.5 = fast, SDXL = higher detail).
- Generation mode:
- txt2img: Create from your text prompt only.
- img2img: Start from an input image and transform it using your text.
- LoRA: A small add‑on that injects a trained style or subject. Use a .safetensors/.pt file.
- Width/Height: Image size in pixels. Bigger = more detail but slower and more VRAM.
- Steps: How long the model refines the image. More steps usually means cleaner details.
- Guidance: How strongly to follow your text. 6–9 is a good range; too high can look unnatural.
- Batch size: How many images at once. Higher uses more VRAM.
- Seed: Randomness control. Reuse the same non‑zero seed to reproduce a result.
- Upscale ×2: Quickly doubles resolution after generation.
- xFormers attention: GPU speed‑up if supported.
- Attention/VAE slicing: Reduce VRAM usage (slightly slower). Keep on for stability.
- VAE tiling: For very large images; decodes in tiles.
- Auto‑retry on CUDA OOM: If VRAM runs out, try again with safer settings.
"""
)
st.button("Close", use_container_width=True)
def apply_preset(name: str):
ss = st.session_state
def s(k, v):
ss[k] = v
if name == "fast":
s("model_choice_selectbox", "SD 1.5 (v1-5)")
s("gen_mode_selectbox", "txt2img")
s("width_input", 512); s("height_input", 512)
s("steps_input", 30); s("guidance_input", 7.5)
s("batch_input", 1); s("seed_input", 0)
s("upsample_checkbox", False)
s("use_xformers_checkbox", True); s("attn_slice_checkbox", True)
s("vae_slice_checkbox", True); s("vae_tile_checkbox", False)
s("oom_retry_checkbox", True)
elif name == "high":
model = "SDXL Base 1.0" if HAS_SDXL else "SD 1.5 (v1-5)"
s("model_choice_selectbox", model)
s("gen_mode_selectbox", "txt2img")
s("width_input", 768); s("height_input", 768)
s("steps_input", 40); s("guidance_input", 7.0)
s("batch_input", 1); s("seed_input", 0)
s("upsample_checkbox", True)
s("use_xformers_checkbox", True); s("attn_slice_checkbox", True)
s("vae_slice_checkbox", True); s("vae_tile_checkbox", False)
s("oom_retry_checkbox", True)
elif name == "low_vram":
s("model_choice_selectbox", "SD 1.5 (v1-5)")
s("gen_mode_selectbox", "txt2img")
s("width_input", 448); s("height_input", 448)
s("steps_input", 25); s("guidance_input", 7.5)
s("batch_input", 1); s("seed_input", 0)
s("upsample_checkbox", False)
s("use_xformers_checkbox", True); s("attn_slice_checkbox", True)
s("vae_slice_checkbox", True); s("vae_tile_checkbox", False)
s("oom_retry_checkbox", True)
elif name == "portrait":
s("gen_mode_selectbox", "txt2img")
s("width_input", 512); s("height_input", 768)
s("steps_input", 30); s("guidance_input", 7.5)
s("batch_input", 1)
elif name == "landscape":
s("gen_mode_selectbox", "txt2img")
s("width_input", 768); s("height_input", 512)
s("steps_input", 30); s("guidance_input", 7.5)
s("batch_input", 1)
elif name == "instagram":
s("gen_mode_selectbox", "txt2img")
s("width_input", 1024); s("height_input", 1024)
s("steps_input", 35); s("guidance_input", 7.0)
s("batch_input", 1); s("upsample_checkbox", False)
elif name == "defaults":
s("model_choice_selectbox", "SD 1.5 (v1-5)")
s("gen_mode_selectbox", "txt2img")
s("width_input", 512); s("height_input", 512)
s("steps_input", 30); s("guidance_input", 7.5)
s("batch_input", 1); s("seed_input", 0)
s("upsample_checkbox", False)
s("use_xformers_checkbox", True); s("attn_slice_checkbox", True)
s("vae_slice_checkbox", True); s("vae_tile_checkbox", False)
s("oom_retry_checkbox", True)
st.rerun()
colA, colB, colC, colD = st.columns(4)
with colA:
if st.button("⚡ Fast Start"):
apply_preset("fast")
with colB:
if st.button("🔍 High Detail"):
apply_preset("high")
with colC:
if st.button("💻 Low VRAM"):
apply_preset("low_vram")
with colD:
if st.button("❓ Glossary"):
show_glossary()
# Simple VRAM safety indicator (placed after preset buttons for visibility)
def estimate_pixels(w, h):
return int(w) * int(h)
def vram_risk_level(w, h, steps, batch, model_name):
px = estimate_pixels(w, h)
multiplier = 1.0 if "1.5" in model_name else 2.0 # SDXL ~2x heavier
load = (px / (512*512)) * (steps / 30.0) * max(1, batch) * multiplier
if load < 1.2:
return "✅ Likely safe"
elif load < 2.2:
return "⚠️ May be heavy — consider smaller size or steps"
else:
return "🟥 High risk of OOM — reduce size/batch/steps"
risk_msg = vram_risk_level(
st.session_state.get("width_input", 512),
st.session_state.get("height_input", 512),
st.session_state.get("steps_input", 30),
st.session_state.get("batch_input", 1),
st.session_state.get("model_choice_selectbox", "SD 1.5 (v1-5)")
)
st.info(f"VRAM safety: {risk_msg}")
# Additional simple layout for more presets and reset
colP0, colP1a, colP2a, colP3a, colP4a = st.columns(5)
with colP0:
if st.button("🧼 Reset to defaults"):
apply_preset("defaults")
with colP1a:
if st.button("🧍 Portrait"):
apply_preset("portrait")
with colP2a:
if st.button("🏞️ Landscape"):
apply_preset("landscape")
with colP3a:
if st.button("📸 Instagram Post"):
apply_preset("instagram")
with colP4a:
st.write("")
# Model selection
st.markdown("### 🤖 Model Selection")
model_choice = st.selectbox(
"Base model",
["SD 1.5 (v1-5)"] + (["SDXL Base 1.0"] if HAS_SDXL else []),
index=0,
help="Choose SD 1.5 for speed/low VRAM. Choose SDXL for higher detail (needs more VRAM/CPU).",
key="model_choice_selectbox"
)
gen_mode = st.selectbox(
"Generation mode",
["txt2img", "img2img"],
index=0,
help="txt2img: make an image from your text. img2img: start from a reference image and transform it.",
key="gen_mode_selectbox"
)
# LoRA integration
st.markdown("### 🎭 LoRA Integration")
use_lora = st.checkbox("Attach LoRA", value=False, help="LoRA = small add-on that injects a learned style or subject into the base model.", key="use_lora_checkbox")
lora_path = st.text_input("LoRA path", "", help="Path to the .safetensors/.pt LoRA file.", key="lora_path_input") if use_lora else ""
lora_scale = st.slider("LoRA scale", 0.1, 1.5, 0.8, 0.05, help="How strongly to apply the LoRA. Start at 0.7–0.9.", key="lora_scale_slider") if use_lora else 0.0
# Generation parameters
st.markdown("### 🎛️ Generation Parameters")
colP1, colP2, colP3, colP4 = st.columns(4)
with colP1:
width = st.number_input("Width", 256, 1536, 512, 64, help="Image width in pixels. Larger = more detail but slower and more VRAM.", key="width_input")
with colP2:
height = st.number_input("Height", 256, 1536, 512, 64, help="Image height in pixels. Common pairs: 512x512 (square), 768x512 (wide).", key="height_input")
with colP3:
steps = st.number_input("Steps", 10, 100, 30, 1, help="How long to refine the image. More steps = better quality but slower.", key="steps_input")
with colP4:
guidance = st.number_input("Guidance", 1.0, 20.0, 7.5, 0.5, help="How strongly to follow your text prompt. 6–9 is a good range.", key="guidance_input")
colP5, colP6, colP7 = st.columns(3)
with colP5:
batch = st.number_input("Batch size", 1, 6, 1, 1, help="How many images to generate at once. Higher uses more VRAM.", key="batch_input")
with colP6:
seed = st.number_input("Seed (0=random)", 0, 2**31-1, 0, 1, help="Use the same seed to reproduce a result. 0 picks a random seed.", key="seed_input")
with colP7:
upsample_x2 = st.checkbox("Upscale ×2 (latent upscaler)", value=False, help="Quickly doubles the resolution after generation.", key="upsample_checkbox")
# Performance optimizations
st.markdown("### ⚡ Performance & Reliability")
st.caption("These options help run on limited VRAM and reduce crashes. If you are new, keep the defaults on.")
colT1, colT2, colT3, colT4 = st.columns(4)
with colT1:
use_xformers = st.checkbox("xFormers attention", value=True, help="Speeds up attention on GPUs that support it.", key="use_xformers_checkbox")
with colT2:
attn_slice = st.checkbox("Attention slicing", value=True, help="Reduces VRAM usage, slightly slower.", key="attn_slice_checkbox")
with colT3:
vae_slice = st.checkbox("VAE slicing", value=True, help="Lower VRAM for the decoder, usually safe to keep on.", key="vae_slice_checkbox")
with colT4:
vae_tile = st.checkbox("VAE tiling", value=False, help="For very large images. Uses tiles to decode.", key="vae_tile_checkbox")
oom_retry = st.checkbox("Auto‑retry on CUDA OOM", value=True, help="If out‑of‑memory happens, try again with safer settings.", key="oom_retry_checkbox")
with st.expander("New to this? Quick tips"):
st.markdown(
"- For fast, reliable results: SD 1.5, 512×512, Steps 25–35, Guidance 7.5, Batch 1.\n"
"- Higher detail: try SDXL (needs more VRAM), Steps 30–50, bigger size like 768×768.\n"
"- Seed: 0 = random. Reuse a non‑zero seed to recreate a result.\n"
"- Out‑of‑memory? Lower width/height, set Batch = 1, keep slicing options on.\n"
"- LoRA: paste path to a .safetensors/.pt file. Start scale at 0.7–0.9.\n"
"- Modes: txt2img = from text; img2img = transform an existing image.\n"
"- Upscale ×2: quickly increases resolution after generation."
)
# ==================== GENERATION SECTION BELOW INPUTS (Phase 3.B + 3.C + 3.E) ====================
with tab_inputs:
st.markdown("<div class='section'>", unsafe_allow_html=True)
st.subheader("🎛️ Fusion & Generation")
# Build final prompt from real processed inputs (Phase 3.B True Fusion)
parts = [p for p in [main_prompt, style, mood] if p and p.strip()]
# Audio fusion - REAL processing
if 'audio_caption' in locals() and enable_audio and audio_caption:
parts.append(f"(sound of: {audio_caption})")
if 'tempo' in locals() and enable_audio and tempo:
tempo_desc = "slow tempo" if tempo < 90 else ("fast tempo" if tempo > 140 else "")
if tempo_desc:
parts.append(tempo_desc)
if 'audio_tags' in locals() and enable_audio and audio_tags:
parts.extend(audio_tags)
# Data fusion - REAL processing
if 'data_summary' in locals() and enable_data and data_summary:
parts.append(f"reflecting data patterns: {data_summary}")
# Emotion fusion - REAL processing
if 'emo_label' in locals() and enable_emo and emo_label:
parts.append(f"with a {emo_label} atmosphere")
elif enable_emo and emo_free.strip():
parts.append(f"evoking the feeling: {emo_free.strip()}")
# Real-time fusion - REAL processing
if 'rt_context' in locals() and enable_rt and rt_context:
parts.append(rt_context)
# Build final fused prompt
final_prompt = ", ".join([p for p in parts if p])
st.markdown("</div>", unsafe_allow_html=True)
st.markdown("### 🔮 Fused Prompt Preview")
st.code(final_prompt, language="text")
# Initialize image for img2img
init_image = None
if gen_mode == "img2img" and enable_ref and style_idxs:
# Use first chosen style reference as init image
init_image = ref_images[style_idxs[0]-1].resize((int(width), int(height)))
# Generation + Clear buttons side-by-side
col_gen, col_clear = st.columns([3, 1])
with col_gen:
go = st.button("🚀 Generate Multimodal Art", type="primary", use_container_width=True)
with col_clear:
clear = st.button("🧹 Clear", use_container_width=True)
# Clear logic: reset prompt fields and any generated output state
if 'generated_images' not in st.session_state:
st.session_state.generated_images = []
if 'generation_results' not in st.session_state:
st.session_state.generation_results = []
if clear:
# Defer clearing input widgets by setting a flag, then rerun
st.session_state["clear_inputs"] = True
st.success("Cleared current prompt and output. Ready for a new prompt.")
st.rerun()
# Cached pipeline getters
@st.cache_resource(show_spinner=True)
def get_txt2img():
return load_sd15(txt2img=True)
@st.cache_resource(show_spinner=True)
def get_img2img():
return load_sd15(txt2img=False)
@st.cache_resource(show_spinner=True)
def get_sdxl():
return load_sdxl()
@st.cache_resource(show_spinner=True)
def get_upscaler():
return load_upscaler()
@st.cache_resource(show_spinner=True)
def get_cn(cn_type: str):
return load_controlnet(cn_type)
@st.cache_resource(show_spinner=True)
def get_cn_i2i(cn_type: str):
return load_controlnet_img2img(cn_type)
def apply_lora(pipe, lora_path, lora_scale):
"""Apply LoRA to pipeline"""
if not lora_path:
return "No LoRA"
try:
pipe.load_lora_weights(lora_path)
try:
pipe.fuse_lora(lora_scale=lora_scale)
except Exception:
try:
pipe.set_adapters(["default"], adapter_weights=[lora_scale])
except Exception:
pass
return f"LoRA loaded: {os.path.basename(lora_path)} (scale {lora_scale})"
except Exception as e:
return f"LoRA failed: {e}"
def upsample_if_any(img: Image.Image):
"""Apply upscaling if enabled"""
if not upsample_x2 or not HAS_UPSCALER:
return img, False, "none"
try:
up = get_upscaler()
with (torch.autocast(DEVICE) if DEVICE == "cuda" else torch.no_grad()):
out = up(prompt="sharp, detailed, high quality", image=img)
return out.images[0], True, "latent_x2"
except Exception as e:
return img, False, f"fail:{e}"
def log_rows(rows, log_path):
"""Log generation results"""
exists = Path(log_path).exists()
# Union header across Phase 3 logs
header = [
"filepath", "prompt", "neg_prompt", "steps", "guidance", "mode", "seed",
"width", "height", "model", "img2img_strength", "cn_type", "cn_scale",
"upscaled", "timestamp"
]
with open(log_path, "a", newline="", encoding="utf-8") as f:
w = csv.writer(f)
if not exists:
w.writerow(header)
for r in rows:
w.writerow([r.get(k, "") for k in header])
# GENERATION EXECUTION
if go:
images, paths = [], []
# Choose pipeline based on model selection
if model_choice.startswith("SDXL") and HAS_SDXL and gen_mode == "txt2img":
pipe = get_sdxl()
model_id = "SDXL-Base-1.0"
else:
if gen_mode == "txt2img":
pipe = get_txt2img()
model_id = "SD-1.5"
else:
pipe = get_img2img()
model_id = "SD-1.5 (img2img)"
# Apply performance optimizations
xformed = attempt_enable_xformers(pipe) if use_xformers else False
apply_perf(pipe, attn_slice, vae_slice, vae_tile)
# Apply LoRA if specified
lora_msg = ""
if use_lora:
lora_msg = apply_lora(pipe, lora_path, lora_scale)
if lora_msg:
st.caption(lora_msg)
# Determine generation mode based on available inputs (Phase 3.C intelligence)
have_style = bool(style_idxs)
have_cn = enable_ref and bool(cn_images)
# MODE PRIORITY: CN+I2I > CN only > I2I only > T2I
mode = "T2I"
if have_cn and have_style and HAS_CONTROLNET:
mode = "CN+I2I"
elif have_cn and HAS_CONTROLNET:
mode = "CN"
elif have_style:
mode = "I2I"
st.info(f"Mode: **{mode}** • Model: **{model_id}** • xFormers: `{xformed}`")
rows = []
attempt_list = list(safe_retry_sizes(height, width, steps)) if oom_retry else [(height, width, steps)]
# Generate batch
for b in range(int(batch)):
ok = False
last_err = None
for (h_try, w_try, s_try) in attempt_list:
try:
# Seed management
seed_eff = torch.seed() if seed == 0 else seed + b
gen = torch.manual_seed(seed_eff) if DEVICE == "cpu" else torch.Generator(DEVICE).manual_seed(seed_eff)
with (torch.autocast(DEVICE) if DEVICE == "cuda" else torch.no_grad()):
if mode == "CN+I2I":
# Hybrid ControlNet + Img2Img (Phase 3.C advanced mode)
if CN_IMG2IMG_AVAILABLE:
cn_pipe = get_cn_i2i(cn_type)
init_ref = ref_images[style_idxs[min(b, len(style_idxs)-1)]-1].resize((w_try, h_try))
out = cn_pipe(
prompt=final_prompt,
image=init_ref,
control_image=[im for im in cn_images],
controlnet_conditioning_scale=cn_scale,
strength=img2img_strength,
num_inference_steps=s_try,
guidance_scale=guidance,
negative_prompt=neg_prompt if neg_prompt.strip() else None,
generator=gen,
)
img = out.images[0]
else:
# Fallback two-pass approach
cn_pipe = get_cn(cn_type)
cn_out = cn_pipe(
prompt=final_prompt,
image=[im for im in cn_images],
controlnet_conditioning_scale=cn_scale,
num_inference_steps=max(s_try//2, 12),
guidance_scale=guidance,
negative_prompt=neg_prompt if neg_prompt.strip() else None,
generator=gen,
)
struct_img = cn_out.images[0].resize((w_try, h_try))
i2i = get_img2img()
init_ref = ref_images[style_idxs[min(b, len(style_idxs)-1)]-1].resize((w_try, h_try))
blend = Image.blend(init_ref, struct_img, 0.5)
out = i2i(
prompt=final_prompt,
image=blend,
strength=img2img_strength,
num_inference_steps=s_try,
guidance_scale=guidance,
negative_prompt=neg_prompt if neg_prompt.strip() else None,
generator=gen,
)
img = out.images[0]
elif mode == "CN":
# ControlNet only
cn_pipe = get_cn(cn_type)
out = cn_pipe(
prompt=final_prompt,
image=[im for im in cn_images],
controlnet_conditioning_scale=cn_scale,
num_inference_steps=s_try,
guidance_scale=guidance,
negative_prompt=neg_prompt if neg_prompt.strip() else None,
generator=gen,
)
img = out.images[0]
elif mode == "I2I":
# Img2Img only
i2i = get_img2img()
init_ref = ref_images[style_idxs[min(b, len(style_idxs)-1)]-1].resize((w_try, h_try))
out = i2i(
prompt=final_prompt,
image=init_ref,
strength=img2img_strength,
num_inference_steps=s_try,
guidance_scale=guidance,
negative_prompt=neg_prompt if neg_prompt.strip() else None,
generator=gen,
)
img = out.images[0]
else:
# Text-to-Image
kwargs = dict(
prompt=final_prompt,
num_inference_steps=s_try,
guidance_scale=guidance,
negative_prompt=neg_prompt if neg_prompt.strip() else None,
generator=gen,
)
if not (model_choice.startswith("SDXL") and HAS_SDXL):
kwargs.update({"height": h_try, "width": w_try})
out = pipe(**kwargs)
img = out.images[0]
# Optional upscaling
upscaled = "none"
if upsample_x2 and HAS_UPSCALER:
img, did_upscale, upscaled = upsample_if_any(img)
# Save image
fname = f"{datetime.now().strftime('%Y%m%d_%H%M%S')}_{mode}_{w_try}x{h_try}_s{s_try}_g{guidance}_seed{seed_eff}.png"
path = save_image(img, fname)
st.image(img, caption=fname, use_container_width=True)
paths.append(path)
images.append(img)
# Log generation
rows.append({
"filepath": path,
"prompt": final_prompt,
"neg_prompt": neg_prompt,
"steps": s_try,
"guidance": guidance,
"mode": mode,
"seed": seed_eff,
"width": w_try,
"height": h_try,
"model": model_id,
"img2img_strength": img2img_strength if mode in ["I2I", "CN+I2I"] else "",
"cn_type": cn_type if mode in ["CN", "CN+I2I"] else "",
"cn_scale": cn_scale if mode in ["CN", "CN+I2I"] else "",
"upscaled": upscaled,
"timestamp": datetime.now().isoformat()
})
ok = True
break
except RuntimeError as e:
if "out of memory" in str(e).lower() and oom_retry and DEVICE == "cuda":
torch.cuda.empty_cache()
st.warning(f"CUDA OOM — retrying at smaller size/steps…")
continue
else:
st.error(f"Runtime error: {e}")
last_err = str(e)
break
except Exception as e:
st.error(f"Error: {e}")
last_err = str(e)
break
if not ok and last_err:
st.error(f"Failed item {b+1}: {last_err}")
# Save results
if rows:
# Write unified run log (3.B/3.C/3.E compatible)
log_rows(rows, RUNLOG)
st.success(f"Saved {len(rows)} image(s). Run log updated: {RUNLOG}")
# ==================== GALLERY & ANNOTATE TAB (Phase 3.D) ====================
with tab_gallery:
st.subheader("🖼️ Gallery & Filters")
# Helper functions for Phase 3.D workflow management
def read_logs():
"""Read and merge all log files"""
frames = []
for p in [RUNLOG, RUNLOG_3C, RUNLOG_3E]:
if Path(p).exists():
try:
df = pd.read_csv(p)
df["source_log"] = Path(p).name
frames.append(df)
except Exception as e:
st.warning(f"Failed reading {p}: {e}")
if not frames:
return pd.DataFrame(columns=["filepath"])
return pd.concat(frames, ignore_index=True).drop_duplicates(subset=["filepath"])
def scan_images():
"""Scan output directory for images"""
rows = [{"filepath": str(p), "filename": p.name} for p in OUTPUT_DIR.glob("*.png")]
return pd.DataFrame(rows)
def load_annotations():
"""Load existing annotations"""
if ANNOT_CSV.exists():
try:
return pd.read_csv(ANNOT_CSV)
except Exception:
pass
return pd.DataFrame(columns=["filepath", "rating", "tags", "notes"])
def save_annotations(df):
"""Save annotations to CSV"""
df.to_csv(ANNOT_CSV, index=False)
# Load data
imgs_df = scan_images()
logs_df = read_logs()
ann_df = load_annotations()
meta_df = imgs_df.merge(logs_df, on="filepath", how="left")
if meta_df.empty:
st.info("No images found in outputs/. Generate some images first.")
else:
# Filtering controls
st.markdown("### 🔍 Filter Images")
colf1, colf2, colf3 = st.columns(3)
with colf1:
mode_opt = ["(all)"] + sorted([m for m in meta_df.get("mode", pd.Series([])).dropna().unique()])
sel_mode = st.selectbox("Filter by mode", mode_opt, index=0)
with colf2:
prompt_filter = st.text_input("Filter prompt contains", "")
with colf3:
min_steps = st.number_input("Min steps", 0, 200, 0, 1)
# Apply filters
filtered = meta_df.copy()
if sel_mode != "(all)" and "mode" in filtered.columns:
filtered = filtered[filtered["mode"] == sel_mode]
if prompt_filter.strip() and "prompt" in filtered.columns:
filtered = filtered[filtered["prompt"].fillna("").str.contains(prompt_filter, case=False)]
if "steps" in filtered.columns:
try:
filtered = filtered[pd.to_numeric(filtered["steps"], errors="coerce").fillna(0) >= min_steps]
except Exception:
pass
st.caption(f"{len(filtered)} image(s) match filters.")
# Display gallery
if not filtered.empty:
st.markdown("### 🖼️ Image Gallery")
cols = st.columns(4)
for i, row in filtered.reset_index(drop=True).iterrows():
with cols[i % 4]:
p = row["filepath"]
try:
st.image(p, use_container_width=True, caption=os.path.basename(p))
except Exception:
st.write(os.path.basename(p))
if "prompt" in row and pd.notna(row["prompt"]):
st.caption(row["prompt"][:120])
# Annotation system
st.markdown("---")
st.subheader("✍️ Annotate / Rate / Tag")
choose = st.multiselect("Pick images to annotate", meta_df["filepath"].tolist())
if choose:
for path in choose:
st.markdown("---")
st.write(f"**{os.path.basename(path)}**")
try:
st.image(path, width=320)
except Exception:
pass
# Get existing annotation values
prev = ann_df[ann_df["filepath"] == path]
rating_val = int(prev.iloc[0]["rating"]) if not prev.empty and not pd.isna(prev.iloc[0]["rating"]) else 3
tags_val = prev.iloc[0]["tags"] if not prev.empty else ""
notes_val = prev.iloc[0]["notes"] if not prev.empty else ""
# Annotation controls
colE1, colE2, colE3 = st.columns([1, 1, 2])
with colE1:
rating = st.slider(
f"Rating {os.path.basename(path)}",
1, 5, rating_val, 1,
key=f"rate_{path}"
)
with colE2:
tags = st.text_input("Tags", tags_val, key=f"tags_{path}")
with colE3:
notes = st.text_area("Notes", notes_val, key=f"notes_{path}")
# Update annotations dataframe
if (ann_df["filepath"] == path).any():
ann_df.loc[ann_df["filepath"] == path, ["rating", "tags", "notes"]] = [rating, tags, notes]
else:
ann_df.loc[len(ann_df)] = [path, rating, tags, notes]
if st.button("💾 Save annotations", use_container_width=True):
save_annotations(ann_df)
st.success("Annotations saved!")
else:
st.info("Select images above to annotate them.")
# ==================== PRESETS TAB (Phase 3.D) ====================
with tab_presets:
st.subheader("💾 Create / Save / Load Presets")
# Preset creation
st.markdown("### 🎛️ Create New Preset")
colP1, colP2 = st.columns(2)
with colP1:
preset_name = st.text_input("Preset name", "my_style", key="preset_name_input")
p_prompt = st.text_input("Prompt", main_prompt or "A serene cyberpunk alley at dawn", key="preset_prompt_input")
p_style = st.text_input("Style", style or "digital painting", key="preset_style_input")
p_mood = st.text_input("Mood", mood or ", ".join(MOOD_OPTIONS[:2]), key="preset_mood_input")
p_neg = st.text_input("Negative", neg_prompt or "", key="preset_neg_input")
with colP2:
p_steps = st.number_input("Steps", 10, 100, steps or 30, 1, key="preset_steps_input")
p_guid = st.number_input("Guidance", 1.0, 20.0, guidance or 7.5, 0.5, key="preset_guidance_input")
p_i2i = st.slider("img2img strength", 0.2, 0.9, 0.55, 0.05, key="preset_i2i_slider")
p_cn_type = st.selectbox("ControlNet type", ["Canny", "Depth"], key="preset_cn_type_selectbox")
p_cn_scale = st.slider("ControlNet scale", 0.1, 2.0, 1.0, 0.05, key="preset_cn_scale_slider")
# Build preset object
preset = {
"name": preset_name,
"prompt": p_prompt,
"style": p_style,
"mood": p_mood,
"negative": p_neg,
"steps": p_steps,
"guidance": p_guid,
"img2img_strength": p_i2i,
"controlnet": {"type": p_cn_type, "scale": p_cn_scale},
"created_at": datetime.now().isoformat()
}
st.markdown("### 📋 Preset Preview")
st.code(json.dumps(preset, indent=2), language="json")
# Save/Load controls
colPS1, colPS2 = st.columns(2)
with colPS1:
st.markdown("### 💾 Save Preset")
if st.button("💾 Save preset", use_container_width=True, key="save_preset_button"):
if preset_name.strip():
fp = PRESETS_DIR / f"{preset_name}.json"
with open(fp, "w", encoding="utf-8") as f:
json.dump(preset, f, indent=2)
st.success(f"Saved {fp}")
else:
st.error("Please enter a preset name")
with colPS2:
st.markdown("### 📂 Load Preset")
existing = sorted([p.name for p in PRESETS_DIR.glob("*.json")])
if existing:
sel = st.selectbox("Load preset", ["(choose)"] + existing, key="load_preset_selectbox")
if sel != "(choose)":
with open(PRESETS_DIR / sel, "r", encoding="utf-8") as f:
loaded = json.load(f)
st.success(f"Loaded {sel}")
st.code(json.dumps(loaded, indent=2), language="json")
else:
st.info("No presets found. Create your first preset above!")
# ==================== EXPORT TAB (Phase 3.D) ====================
with tab_export:
st.subheader("📦 Export Bundle (ZIP)")
# Helper functions for export
def read_logs_all():
"""Read all logs for export"""
frames = []
for p in [RUNLOG, RUNLOG_3C, RUNLOG_3E]:
if Path(p).exists():
try:
df = pd.read_csv(p)
df["source_log"] = Path(p).name
frames.append(df)
except Exception as e:
st.warning(f"Read fail {p}: {e}")
if not frames:
return pd.DataFrame(columns=["filepath"])
return pd.concat(frames, ignore_index=True).drop_duplicates(subset=["filepath"])
def scan_imgs():
"""Scan images for export"""
return pd.DataFrame([
{"filepath": str(p), "filename": p.name}
for p in OUTPUT_DIR.glob("*.png")
])
# Load export data
imgs_df = scan_imgs()
logs_df = read_logs_all()
if imgs_df.empty:
st.info("No images to export yet. Generate some images first.")
else:
meta_df = imgs_df.merge(logs_df, on="filepath", how="left")
# Display available images
st.markdown("### 📋 Available Images")
display_cols = ["filepath", "prompt", "mode", "steps", "guidance"]
available_cols = [col for col in display_cols if col in meta_df.columns]
st.dataframe(
meta_df[available_cols].fillna("").astype(str),
use_container_width=True,
height=240
)
# Export selection
st.markdown("### 🎯 Export Selection")
sel = st.multiselect(
"Select images to export",
meta_df["filepath"].tolist(),
default=meta_df["filepath"].tolist()[:8],
key="export_images_multiselect"
)
# Preset inclusion
include_preset = st.checkbox("Include preset.json", value=False, key="include_preset_checkbox")
preset_blob = None
if include_preset:
ex = sorted([p.name for p in PRESETS_DIR.glob("*.json")])
if ex:
choose = st.selectbox("Choose preset", ex, key="export_preset_selectbox")
with open(PRESETS_DIR / choose, "r", encoding="utf-8") as f:
preset_blob = json.load(f)
else:
st.warning("No presets found in /presets")
include_preset = False
# Bundle configuration
bundle_name = st.text_input(
"Bundle name (no spaces)",
f"compi_export_{datetime.now().strftime('%Y%m%d_%H%M%S')}",
key="bundle_name_input"
)
# Create export bundle
if st.button("📦 Create Export Bundle", type="primary", use_container_width=True, key="create_bundle_button"):
if not sel:
st.error("Pick at least one image.")
elif not bundle_name.strip():
st.error("Please enter a bundle name.")
else:
with st.spinner("Creating export bundle..."):
# Create temporary directory
tmp_dir = EXPORTS_DIR / bundle_name
if tmp_dir.exists():
shutil.rmtree(tmp_dir)
(tmp_dir / "images").mkdir(parents=True, exist_ok=True)
# Copy images
for p in sel:
try:
shutil.copy2(p, tmp_dir / "images" / os.path.basename(p))
except Exception as e:
st.warning(f"Copy failed: {p} ({e})")
# Export metadata
msel = meta_df[meta_df["filepath"].isin(sel)].copy()
msel.to_csv(tmp_dir / "metadata.csv", index=False)
# Export annotations
if ANNOT_CSV.exists():
shutil.copy2(ANNOT_CSV, tmp_dir / "annotations.csv")
else:
pd.DataFrame(columns=["filepath", "rating", "tags", "notes"]).to_csv(
tmp_dir / "annotations.csv", index=False
)
# Create manifest
manifest = {
"bundle_name": bundle_name,
"created_at": datetime.now().isoformat(),
"environment": env_snapshot(),
"includes": {
"images": True,
"metadata_csv": True,
"annotations_csv": True,
"preset_json": bool(preset_blob),
"readme_md": True
}
}
with open(tmp_dir / "manifest.json", "w", encoding="utf-8") as f:
json.dump(manifest, f, indent=2)
# Include preset if specified
if preset_blob:
with open(tmp_dir / "preset.json", "w", encoding="utf-8") as f:
json.dump(preset_blob, f, indent=2)
# Create README
with open(tmp_dir / "README.md", "w", encoding="utf-8") as f:
f.write(mk_readme(manifest, msel))
# Create ZIP file
zpath = EXPORTS_DIR / f"{bundle_name}.zip"
if zpath.exists():
zpath.unlink()
with zipfile.ZipFile(zpath, 'w', zipfile.ZIP_DEFLATED) as zf:
for root, _, files in os.walk(tmp_dir):
for file in files:
full = Path(root) / file
zf.write(full, full.relative_to(tmp_dir))
# Cleanup temporary directory
shutil.rmtree(tmp_dir, ignore_errors=True)
st.success(f"✅ Export created: {zpath}")
st.info(f"📁 Bundle size: {zpath.stat().st_size / (1024*1024):.1f} MB")
# Provide download link
with open(zpath, "rb") as f:
st.download_button(
label="📥 Download Export Bundle",
data=f.read(),
file_name=f"{bundle_name}.zip",
mime="application/zip",
use_container_width=True
)
# ==================== FOOTER ====================
st.markdown("---")
st.markdown("""
<div style='text-align: center; color: #666; padding: 20px;'>
<strong>🧪 CompI Phase 3 Final Dashboard</strong><br>
Complete integration of all Phase 3 components (3.A → 3.E)<br>
<em>Multimodal AI Art Generation • Advanced References • Performance Management • Professional Workflow</em>
</div>
""", unsafe_allow_html=True)
|