File size: 10,304 Bytes
338d95d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 |
#!/usr/bin/env python3
"""
CompI Phase 3 Final Dashboard Launcher
Launch the complete Phase 3 integrated dashboard that combines ALL CompI features:
Phase 3.A/3.B: True multimodal fusion with real processing
- Real audio transcription and analysis
- Actual data processing and visualization
- Sentiment analysis and emotion detection
- Live real-time data feeds (weather, news)
Phase 3.C: Advanced references with role assignment
- Multi-image upload and URL support
- Style vs structure role assignment
- Live ControlNet previews (Canny/Depth)
- Hybrid CN+I2I generation modes
Phase 3.D: Professional workflow management
- Gallery with advanced filtering
- Rating, tagging, and annotation system
- Preset save/load functionality
- Complete export bundles with metadata
Phase 3.E: Performance management and model switching
- SD 1.5 β SDXL model switching
- LoRA integration with scale control
- Performance optimizations (xFormers, attention slicing, VAE)
- VRAM monitoring and OOM auto-retry
- Optional latent upscaling
Usage:
python run_phase3_final_dashboard.py
or
streamlit run src/ui/compi_phase3_final_dashboard.py --server.port 8506
"""
import os
import sys
import subprocess
from pathlib import Path
def check_dependencies():
"""Check for required dependencies"""
print("π¦ Checking dependencies...")
required_packages = {
"torch": "PyTorch",
"diffusers": "Diffusers",
"transformers": "Transformers",
"accelerate": "Accelerate",
"streamlit": "Streamlit",
"pillow": "Pillow (PIL)",
"numpy": "NumPy",
"pandas": "Pandas",
"librosa": "Librosa (audio processing)",
"matplotlib": "Matplotlib (plotting)",
"requests": "Requests (HTTP)",
"feedparser": "FeedParser (RSS feeds)",
"textblob": "TextBlob (sentiment analysis)"
}
# Special check for OpenCV (accept either opencv-python or opencv-python-headless)
opencv_available = False
try:
import cv2
opencv_available = True
required_packages["cv2"] = "OpenCV (image processing)"
except ImportError:
pass
missing_packages = []
available_packages = []
for package, name in required_packages.items():
try:
__import__(package.replace("-", "_"))
available_packages.append(name)
except ImportError:
if package != "cv2": # cv2 already checked above
missing_packages.append(package)
# Add opencv to missing if not available
if not opencv_available:
missing_packages.append("opencv-python")
print(f"β
Available: {', '.join(available_packages)}")
if missing_packages:
print(f"β Missing: {', '.join(missing_packages)}")
return False
return True
def check_optional_features():
"""Check for optional features"""
print("\nπ Checking optional features...")
# Check Whisper
try:
import whisper
print("β
Whisper available for audio transcription")
except ImportError:
print("β οΈ Whisper not available (will be installed on first use)")
# Check SDXL availability
try:
from diffusers import StableDiffusionXLPipeline
print("β
SDXL support available")
except ImportError:
print("β οΈ SDXL not available (requires newer diffusers)")
# Check ControlNet availability
try:
from diffusers import StableDiffusionControlNetPipeline
print("β
ControlNet available")
except ImportError:
print("β οΈ ControlNet not available")
# Check upscaler availability
try:
from diffusers import StableDiffusionLatentUpscalePipeline
print("β
Latent Upscaler available")
except ImportError:
print("β οΈ Latent Upscaler not available")
# Check xFormers
try:
import xformers
print("β
xFormers available for memory optimization")
except ImportError:
print("β οΈ xFormers not available (optional performance boost)")
def check_gpu_setup():
"""Check GPU setup and provide recommendations"""
print("\nπ Checking GPU setup...")
try:
import torch
if torch.cuda.is_available():
gpu_count = torch.cuda.device_count()
gpu_name = torch.cuda.get_device_name(0)
total_memory = torch.cuda.get_device_properties(0).total_memory / (1024**3)
print(f"β
CUDA available: {gpu_count} GPU(s)")
print(f" Primary GPU: {gpu_name}")
print(f" VRAM: {total_memory:.1f} GB")
if total_memory >= 12.0:
print("β
Excellent VRAM for all features including SDXL")
elif total_memory >= 8.0:
print("β
Good VRAM for SDXL and most features")
elif total_memory >= 6.0:
print("β
Sufficient VRAM for SD 1.5 and most features")
print("β οΈ SDXL may require optimizations")
elif total_memory >= 4.0:
print("β
Minimum VRAM for SD 1.5")
print("β οΈ Use aggressive optimizations for best performance")
else:
print("β οΈ Limited VRAM - consider CPU mode or cloud GPU")
return True
else:
print("β οΈ CUDA not available - will use CPU mode")
print("π‘ CPU mode is slower but still functional")
return False
except ImportError:
print("β PyTorch not found")
return False
def install_missing_dependencies():
"""Install missing dependencies"""
print("\nπ¦ Installing missing dependencies...")
try:
# Core dependencies
core_packages = [
"torch", "torchvision", "torchaudio",
"diffusers>=0.21.0", "transformers", "accelerate",
"streamlit", "pillow", "numpy", "pandas",
"librosa", "opencv-python", "matplotlib",
"requests", "feedparser", "textblob"
]
print("Installing core packages...")
subprocess.check_call([
sys.executable, "-m", "pip", "install"
] + core_packages)
print("β
Core dependencies installed")
# Optional performance packages (skip xformers due to compatibility issues)
print("β οΈ Skipping xFormers installation (compatibility issues with current PyTorch version)")
return True
except subprocess.CalledProcessError as e:
print(f"β Installation failed: {e}")
return False
def main():
"""Launch Phase 3 Final Dashboard"""
print("π§ͺ CompI Phase 3 Final Dashboard")
print("=" * 80)
print()
print("π― Complete Phase 3 Integration (3.A β 3.E):")
print(" β’ π§© Multimodal Inputs: Text, Audio, Data, Emotion, Real-time")
print(" β’ πΌοΈ Advanced References: Role assignment, ControlNet, live previews")
print(" β’ βοΈ Model & Performance: SD 1.5/SDXL, LoRA, VRAM monitoring")
print(" β’ ποΈ Intelligent Generation: Hybrid modes, OOM recovery")
print(" β’ πΌοΈ Professional Gallery: Filtering, rating, annotation")
print(" β’ πΎ Preset Management: Save/load configurations")
print(" β’ π¦ Export System: Complete bundles with metadata")
print()
# Check if the UI file exists
ui_file = Path("src/ui/compi_phase3_final_dashboard.py")
if not ui_file.exists():
print(f"β Error: {ui_file} not found!")
print("Make sure you're running this from the project root directory.")
return 1
# Check dependencies
if not check_dependencies():
print("\nβ Missing dependencies detected.")
install = input("Install missing dependencies? (y/n): ").lower().strip()
if install == 'y':
if not install_missing_dependencies():
print("β Failed to install dependencies")
return 1
else:
print("β Cannot proceed without required dependencies")
return 1
# Check GPU setup
has_gpu = check_gpu_setup()
# Check optional features
check_optional_features()
print()
print("π Launching Phase 3 Final Dashboard...")
print("π Access at: http://localhost:8506")
print()
if has_gpu:
print("π‘ GPU Tips:")
print(" β’ Monitor VRAM usage in the top metrics bar")
print(" β’ Use performance optimizations in Model & Performance tab")
print(" β’ Enable OOM auto-retry for reliability")
print(" β’ Try SDXL for higher quality (requires 8+ GB VRAM)")
else:
print("π‘ CPU Tips:")
print(" β’ Generation will be slower but still functional")
print(" β’ Use smaller image sizes (512x512 or less)")
print(" β’ Reduce inference steps for faster generation")
print(" β’ Stick to SD 1.5 model for best performance")
print()
print("π¨ Getting Started:")
print(" 1. π§© Configure multimodal inputs (audio, data, emotion, real-time)")
print(" 2. πΌοΈ Upload reference images and assign roles (style vs structure)")
print(" 3. βοΈ Choose model and optimize performance settings")
print(" 4. ποΈ Generate with intelligent fusion of all inputs")
print(" 5. πΌοΈ Review results in gallery and add annotations")
print(" 6. πΎ Save presets for reuse")
print(" 7. π¦ Export complete bundles with metadata")
print()
# Launch Streamlit
try:
cmd = [
sys.executable, "-m", "streamlit", "run",
str(ui_file),
"--server.port", "8506",
"--server.headless", "true",
"--browser.gatherUsageStats", "false"
]
subprocess.run(cmd)
except KeyboardInterrupt:
print("\nπ Phase 3 Final Dashboard stopped by user")
return 0
except Exception as e:
print(f"β Error launching Streamlit: {e}")
return 1
return 0
if __name__ == "__main__":
exit_code = main()
sys.exit(exit_code)
|