File size: 11,240 Bytes
338d95d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
# βš™οΈ CompI Phase 3.E: Performance, Model Management & Reliability - Complete Guide

## 🎯 **What Phase 3.E Delivers**

**Phase 3.E transforms CompI into a production-grade platform with professional performance management, intelligent reliability, and advanced model capabilities.**

### **πŸ€– Model Manager**
- **Dynamic Model Switching**: Switch between SD 1.5 and SDXL based on requirements
- **Auto-Availability Checking**: Intelligent detection of model compatibility and VRAM requirements
- **Universal LoRA Support**: Load and scale LoRA weights across all models and generation modes
- **Smart Recommendations**: Hardware-based model suggestions and optimization advice

### **⚑ Performance Controls**
- **xFormers Integration**: Memory-efficient attention with automatic fallback
- **Advanced Memory Optimization**: Attention slicing, VAE slicing/tiling, CPU offloading
- **Precision Control**: Automatic dtype selection (fp16/bf16/fp32) based on hardware
- **Batch Optimization**: Memory-aware batch processing with intelligent sizing

### **πŸ“Š VRAM Monitoring**
- **Real-time Tracking**: Live GPU memory usage monitoring and alerts
- **Usage Analytics**: Memory usage patterns and optimization suggestions
- **Threshold Warnings**: Automatic alerts when approaching memory limits
- **Cache Management**: Intelligent GPU cache clearing and memory cleanup

### **πŸ›‘οΈ Reliability Engine**
- **OOM-Safe Generation**: Automatic retry with progressive fallback strategies
- **Intelligent Fallbacks**: Reduce size β†’ reduce steps β†’ CPU fallback progression
- **Error Classification**: Smart error detection and appropriate response strategies
- **Graceful Degradation**: Maintain functionality even under resource constraints

### **πŸ“¦ Batch Processing**
- **Seed-Controlled Batches**: Deterministic seed sequences for reproducible results
- **Memory-Aware Batching**: Automatic batch size optimization based on available VRAM
- **Progress Tracking**: Detailed progress monitoring with per-image status
- **Failure Recovery**: Continue batch processing even if individual images fail

### **πŸ” Upscaler Integration**
- **Latent Upscaler**: Optional 2x upscaling using Stable Diffusion Latent Upscaler
- **Graceful Degradation**: Clean fallback when upscaler unavailable
- **Memory Management**: Intelligent memory allocation for upscaling operations
- **Quality Enhancement**: Professional-grade image enhancement capabilities

---

## πŸš€ **Quick Start Guide**

### **1. Launch Phase 3.E**
```bash
# Method 1: Using launcher script (recommended)
python run_phase3e_performance_manager.py

# Method 2: Direct Streamlit launch
streamlit run src/ui/compi_phase3e_performance_manager.py --server.port 8505
```

### **2. System Requirements Check**
The launcher automatically checks:
- **GPU Setup**: CUDA availability and VRAM capacity
- **Dependencies**: Required and optional packages
- **Model Support**: SD 1.5 and SDXL availability
- **Performance Features**: xFormers and upscaler support

### **3. Access the Interface**
- **URL:** `http://localhost:8505`
- **Interface:** Professional Streamlit dashboard with real-time monitoring
- **Sidebar:** Live VRAM monitoring and system status

---

## 🎨 **Professional Workflow**

### **Step 1: Model Selection**
1. **Choose Base Model**: SD 1.5 (fast, compatible) or SDXL (high quality, more VRAM)
2. **Select Generation Mode**: txt2img or img2img
3. **Check Compatibility**: System automatically validates model/mode combinations
4. **Review VRAM Requirements**: See memory requirements and availability status

### **Step 2: LoRA Integration (Optional)**
1. **Enable LoRA**: Toggle LoRA support
2. **Specify Path**: Enter path to LoRA weights (diffusers format)
3. **Set Scale**: Adjust LoRA influence (0.1-2.0)
4. **Verify Status**: Check LoRA loading status and compatibility

### **Step 3: Performance Optimization**
1. **Choose Optimization Level**: Conservative, Balanced, Aggressive, or Extreme
2. **Monitor VRAM**: Watch real-time memory usage in sidebar
3. **Adjust Settings**: Fine-tune individual optimization features
4. **Enable Reliability**: Configure OOM retry and CPU fallback options

### **Step 4: Generation**
1. **Single Images**: Generate individual images with full control
2. **Batch Processing**: Create multiple images with seed sequences
3. **Monitor Progress**: Track generation progress and memory usage
4. **Review Results**: Analyze generation statistics and performance metrics

---

## πŸ”§ **Advanced Features**

### **πŸ€– Model Manager Deep Dive**

#### **Model Compatibility Matrix**
```python
SD 1.5:
  βœ… txt2img (512x512 optimal)
  βœ… img2img (all strengths)
  βœ… ControlNet (full support)
  βœ… LoRA (universal compatibility)
  πŸ’Ύ VRAM: 4+ GB recommended

SDXL:
  βœ… txt2img (1024x1024 optimal)
  βœ… img2img (limited support)
  ⚠️ ControlNet (requires special handling)
  βœ… LoRA (SDXL-compatible weights only)
  πŸ’Ύ VRAM: 8+ GB recommended
```

#### **Automatic Model Selection Logic**
- **VRAM < 6GB**: Recommends SD 1.5 only
- **VRAM 6-8GB**: SD 1.5 preferred, SDXL with warnings
- **VRAM 8GB+**: Full SDXL support with optimizations
- **CPU Mode**: SD 1.5 only with aggressive optimizations

### **⚑ Performance Optimization Levels**

#### **Conservative Mode**
- Basic attention slicing
- Standard precision (fp16/fp32)
- Minimal memory optimizations
- **Best for**: Stable systems, first-time users

#### **Balanced Mode (Default)**
- xFormers attention (if available)
- Attention + VAE slicing
- Automatic precision selection
- **Best for**: Most users, good performance/stability balance

#### **Aggressive Mode**
- All memory optimizations enabled
- VAE tiling for large images
- Maximum memory efficiency
- **Best for**: Limited VRAM, large batch processing

#### **Extreme Mode**
- CPU offloading enabled
- Maximum memory savings
- Slower but uses minimal VRAM
- **Best for**: Very limited VRAM (<4GB)

### **πŸ›‘οΈ Reliability Engine Strategies**

#### **Fallback Progression**
```python
Strategy 1: Original settings (100% size, 100% steps)
Strategy 2: Reduced size (75% size, 90% steps)  
Strategy 3: Half size (50% size, 80% steps)
Strategy 4: Minimal (50% size, 60% steps)
Final: CPU fallback if all GPU attempts fail
```

#### **Error Classification**
- **CUDA OOM**: Triggers progressive fallback
- **Model Loading**: Suggests alternative models
- **LoRA Errors**: Disables LoRA and retries
- **General Errors**: Logs and reports with context

### **πŸ“Š VRAM Monitoring System**

#### **Real-time Metrics**
- **Total VRAM**: Hardware capacity
- **Used VRAM**: Currently allocated memory
- **Free VRAM**: Available for new operations
- **Usage Percentage**: Current utilization level

#### **Smart Alerts**
- **Green (0-60%)**: Optimal usage
- **Yellow (60-80%)**: Moderate usage, monitor closely
- **Red (80%+)**: High usage, optimization recommended

#### **Memory Management**
- **Automatic Cache Clearing**: Between batch generations
- **Memory Leak Detection**: Identifies and resolves memory issues
- **Optimization Suggestions**: Hardware-specific recommendations

---

## πŸ“ˆ **Performance Benchmarks**

### **Generation Speed Comparison**
```
SD 1.5 (512x512, 20 steps):
  RTX 4090: ~15-25 seconds
  RTX 3080: ~25-35 seconds  
  RTX 2080: ~45-60 seconds
  CPU: ~5-10 minutes

SDXL (1024x1024, 20 steps):
  RTX 4090: ~30-45 seconds
  RTX 3080: ~60-90 seconds
  RTX 2080: ~2-3 minutes (with optimizations)
  CPU: ~15-30 minutes
```

### **Memory Usage Patterns**
```
SD 1.5:
  Base: ~3.5GB VRAM
  + LoRA: ~3.7GB VRAM
  + Upscaler: ~5.5GB VRAM

SDXL:
  Base: ~6.5GB VRAM
  + LoRA: ~7.0GB VRAM  
  + Upscaler: ~9.0GB VRAM
```

---

## πŸ” **Troubleshooting Guide**

### **Common Issues & Solutions**

#### **"CUDA Out of Memory" Errors**
1. **Enable OOM Auto-Retry**: Automatic fallback handling
2. **Reduce Image Size**: Use 512x512 instead of 1024x1024
3. **Lower Batch Size**: Generate fewer images simultaneously
4. **Enable Aggressive Optimizations**: Use VAE slicing/tiling
5. **Clear GPU Cache**: Use sidebar "Clear GPU Cache" button

#### **Slow Generation Speed**
1. **Enable xFormers**: Significant speed improvement if available
2. **Use Balanced Optimization**: Good speed/quality trade-off
3. **Reduce Inference Steps**: 15-20 steps often sufficient
4. **Check VRAM Usage**: Ensure not hitting memory limits

#### **Model Loading Failures**
1. **Check Internet Connection**: Models download on first use
2. **Verify Disk Space**: Models require 2-7GB storage each
3. **Try Alternative Model**: Switch between SD 1.5 and SDXL
4. **Clear Model Cache**: Remove cached models and re-download

#### **LoRA Loading Issues**
1. **Verify Path**: Ensure LoRA files exist at specified path
2. **Check Format**: Use diffusers-compatible LoRA weights
3. **Model Compatibility**: Ensure LoRA matches base model type
4. **Scale Adjustment**: Try different LoRA scale values

---

## 🎯 **Best Practices**

### **πŸ“ Performance Optimization**
1. **Start Conservative**: Begin with balanced settings, adjust as needed
2. **Monitor VRAM**: Keep usage below 80% for stability
3. **Batch Wisely**: Use smaller batches on limited hardware
4. **Clear Cache Regularly**: Prevent memory accumulation

### **πŸ€– Model Selection**
1. **SD 1.5 for Speed**: Faster generation, lower VRAM requirements
2. **SDXL for Quality**: Higher resolution, better detail
3. **Match Hardware**: Choose model based on available VRAM
4. **Test Compatibility**: Verify model works with your use case

### **πŸ›‘οΈ Reliability**
1. **Enable Auto-Retry**: Let system handle OOM errors automatically
2. **Use Fallbacks**: Allow progressive degradation for reliability
3. **Monitor Logs**: Check run logs for patterns and issues
4. **Plan for Failures**: Design workflows that handle generation failures

---

## πŸš€ **Integration with CompI Ecosystem**

### **Universal Enhancement**
Phase 3.E enhances ALL existing CompI components:
- **Ultimate Dashboard**: Model switching and performance controls
- **Phase 2.A-2.E**: Reliability and optimization for all multimodal phases
- **Phase 1.A-1.E**: Enhanced foundation with professional features
- **Phase 3.D**: Performance metrics in workflow management

### **Backward Compatibility**
- **Graceful Degradation**: Works on all hardware configurations
- **Default Settings**: Optimal defaults for most users
- **Progressive Enhancement**: Advanced features when available
- **Legacy Support**: Maintains compatibility with existing workflows

---

## πŸŽ‰ **Phase 3.E: Production-Grade CompI Complete**

**Phase 3.E transforms CompI into a production-grade platform with professional performance management, intelligent reliability, and advanced model capabilities.**

**Key Benefits:**
- βœ… **Professional Performance**: Industry-standard optimization and monitoring
- βœ… **Intelligent Reliability**: Automatic error handling and recovery
- βœ… **Advanced Model Management**: Dynamic switching and LoRA integration
- βœ… **Production Ready**: Suitable for commercial and professional use
- βœ… **Universal Enhancement**: Improves all existing CompI features

**CompI is now a complete, production-grade multimodal AI art generation platform!** 🎨✨