File size: 22,338 Bytes
338d95d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 |
"""
CompI Real-Time Data Processing Utilities
This module provides utilities for Phase 2.D: Real-Time Data Feeds Integration
- Weather data fetching from multiple APIs
- News headlines and RSS feed processing
- Social media trends and sentiment analysis
- Stock market and financial data integration
- Data summarization and context generation
- Real-time data caching and rate limiting
"""
import os
import json
import time
import hashlib
import requests
import feedparser
from datetime import datetime, timedelta
from typing import Dict, List, Optional, Tuple, Union, Any
from dataclasses import dataclass, asdict
from enum import Enum
import logging
logger = logging.getLogger(__name__)
class DataFeedType(Enum):
"""Types of real-time data feeds"""
WEATHER = "weather"
NEWS = "news"
SOCIAL = "social"
FINANCIAL = "financial"
SPORTS = "sports"
TECHNOLOGY = "technology"
CUSTOM_RSS = "custom_rss"
@dataclass
class RealTimeDataPoint:
"""Container for a single real-time data point"""
feed_type: DataFeedType
source: str
timestamp: datetime
title: str
content: str
metadata: Dict[str, Any]
sentiment_score: Optional[float] = None
relevance_score: Optional[float] = None
def to_dict(self) -> Dict[str, Any]:
"""Convert to dictionary for JSON serialization"""
return {
'feed_type': self.feed_type.value,
'source': self.source,
'timestamp': self.timestamp.isoformat(),
'title': self.title,
'content': self.content,
'metadata': self.metadata,
'sentiment_score': self.sentiment_score,
'relevance_score': self.relevance_score
}
@dataclass
class RealTimeContext:
"""Container for processed real-time context"""
data_points: List[RealTimeDataPoint]
summary: str
mood_indicators: List[str]
key_themes: List[str]
temporal_context: str
artistic_inspiration: str
def to_dict(self) -> Dict[str, Any]:
"""Convert to dictionary for JSON serialization"""
return {
'data_points': [dp.to_dict() for dp in self.data_points],
'summary': self.summary,
'mood_indicators': self.mood_indicators,
'key_themes': self.key_themes,
'temporal_context': self.temporal_context,
'artistic_inspiration': self.artistic_inspiration
}
class DataFeedCache:
"""Simple caching system for real-time data to respect rate limits"""
def __init__(self, cache_duration_minutes: int = 15):
"""
Initialize cache
Args:
cache_duration_minutes: How long to cache data in minutes
"""
self.cache = {}
self.cache_duration = timedelta(minutes=cache_duration_minutes)
def get_cache_key(self, feed_type: str, params: Dict[str, Any]) -> str:
"""Generate cache key from feed type and parameters"""
param_str = json.dumps(params, sort_keys=True)
return hashlib.md5(f"{feed_type}_{param_str}".encode()).hexdigest()
def get(self, feed_type: str, params: Dict[str, Any]) -> Optional[Any]:
"""Get cached data if still valid"""
cache_key = self.get_cache_key(feed_type, params)
if cache_key in self.cache:
data, timestamp = self.cache[cache_key]
if datetime.now() - timestamp < self.cache_duration:
logger.info(f"Using cached data for {feed_type}")
return data
else:
# Remove expired cache
del self.cache[cache_key]
return None
def set(self, feed_type: str, params: Dict[str, Any], data: Any):
"""Cache data with timestamp"""
cache_key = self.get_cache_key(feed_type, params)
self.cache[cache_key] = (data, datetime.now())
logger.info(f"Cached data for {feed_type}")
class WeatherDataFetcher:
"""Fetch weather data from multiple sources"""
def __init__(self, api_key: Optional[str] = None):
"""
Initialize weather fetcher
Args:
api_key: OpenWeatherMap API key (optional, uses demo key if not provided)
"""
self.api_key = api_key or "9a524f695a4940f392150142250107" # User's API key
self.base_url = "https://api.openweathermap.org/data/2.5/weather"
def fetch_weather(self, city: str, country_code: Optional[str] = None) -> RealTimeDataPoint:
"""
Fetch current weather for a city
Args:
city: City name
country_code: Optional country code (e.g., 'US', 'UK')
Returns:
RealTimeDataPoint with weather information
"""
logger.info(f"Fetching weather for {city}")
# Prepare query
query = city
if country_code:
query += f",{country_code}"
params = {
"q": query,
"units": "metric",
"appid": self.api_key
}
try:
response = requests.get(self.base_url, params=params, timeout=10)
response.raise_for_status()
data = response.json()
# Extract weather information
weather_main = data['weather'][0]['main']
weather_desc = data['weather'][0]['description']
temp = data['main']['temp']
feels_like = data['main']['feels_like']
humidity = data['main']['humidity']
pressure = data['main']['pressure']
# Create content summary
content = f"Current weather in {city}: {weather_desc}, {temp:.1f}°C (feels like {feels_like:.1f}°C), humidity {humidity}%, pressure {pressure} hPa"
# Determine mood based on weather
mood_mapping = {
'clear': 'bright and optimistic',
'clouds': 'contemplative and soft',
'rain': 'melancholic and reflective',
'drizzle': 'gentle and soothing',
'thunderstorm': 'dramatic and intense',
'snow': 'serene and peaceful',
'mist': 'mysterious and ethereal',
'fog': 'mysterious and ethereal'
}
mood = mood_mapping.get(weather_main.lower(), 'neutral')
return RealTimeDataPoint(
feed_type=DataFeedType.WEATHER,
source="OpenWeatherMap",
timestamp=datetime.now(),
title=f"Weather in {city}",
content=content,
metadata={
'city': city,
'country_code': country_code,
'temperature': temp,
'feels_like': feels_like,
'humidity': humidity,
'pressure': pressure,
'weather_main': weather_main,
'weather_description': weather_desc,
'mood': mood
}
)
except requests.exceptions.RequestException as e:
logger.error(f"Error fetching weather data: {e}")
return RealTimeDataPoint(
feed_type=DataFeedType.WEATHER,
source="OpenWeatherMap",
timestamp=datetime.now(),
title=f"Weather in {city}",
content=f"Unable to fetch weather data for {city}: {str(e)}",
metadata={'error': str(e), 'city': city}
)
class NewsDataFetcher:
"""Fetch news data from multiple sources"""
def __init__(self, api_key: Optional[str] = None):
"""
Initialize news fetcher
Args:
api_key: NewsAPI key (optional, uses RSS feeds if not provided)
"""
self.api_key = api_key
self.newsapi_url = "https://newsapi.org/v2/top-headlines"
# Free RSS feeds for different categories
self.rss_feeds = {
'general': 'https://feeds.bbci.co.uk/news/rss.xml',
'technology': 'https://feeds.bbci.co.uk/news/technology/rss.xml',
'science': 'https://feeds.bbci.co.uk/news/science_and_environment/rss.xml',
'world': 'https://feeds.bbci.co.uk/news/world/rss.xml',
'business': 'https://feeds.bbci.co.uk/news/business/rss.xml'
}
def fetch_news_headlines(self, category: str = 'general', max_headlines: int = 5) -> List[RealTimeDataPoint]:
"""
Fetch news headlines
Args:
category: News category
max_headlines: Maximum number of headlines to fetch
Returns:
List of RealTimeDataPoint objects with news data
"""
logger.info(f"Fetching {max_headlines} news headlines for category: {category}")
if self.api_key:
return self._fetch_from_newsapi(category, max_headlines)
else:
return self._fetch_from_rss(category, max_headlines)
def _fetch_from_newsapi(self, category: str, max_headlines: int) -> List[RealTimeDataPoint]:
"""Fetch news from NewsAPI (requires API key)"""
params = {
'apiKey': self.api_key,
'category': category,
'pageSize': max_headlines,
'language': 'en'
}
try:
response = requests.get(self.newsapi_url, params=params, timeout=10)
response.raise_for_status()
data = response.json()
news_points = []
for article in data.get('articles', []):
news_point = RealTimeDataPoint(
feed_type=DataFeedType.NEWS,
source=article.get('source', {}).get('name', 'Unknown'),
timestamp=datetime.now(),
title=article.get('title', ''),
content=article.get('description', ''),
metadata={
'url': article.get('url', ''),
'published_at': article.get('publishedAt', ''),
'category': category
}
)
news_points.append(news_point)
return news_points
except Exception as e:
logger.error(f"Error fetching news from NewsAPI: {e}")
return []
def _fetch_from_rss(self, category: str, max_headlines: int) -> List[RealTimeDataPoint]:
"""Fetch news from RSS feeds (free, no API key required)"""
feed_url = self.rss_feeds.get(category, self.rss_feeds['general'])
try:
feed = feedparser.parse(feed_url)
news_points = []
for entry in feed.entries[:max_headlines]:
news_point = RealTimeDataPoint(
feed_type=DataFeedType.NEWS,
source=feed.feed.get('title', 'BBC News'),
timestamp=datetime.now(),
title=entry.get('title', ''),
content=entry.get('summary', ''),
metadata={
'url': entry.get('link', ''),
'published': entry.get('published', ''),
'category': category
}
)
news_points.append(news_point)
return news_points
except Exception as e:
logger.error(f"Error fetching RSS news: {e}")
return []
class FinancialDataFetcher:
"""Fetch financial and market data"""
def __init__(self):
"""Initialize financial data fetcher"""
# Using free APIs that don't require keys
self.crypto_url = "https://api.coindesk.com/v1/bpi/currentprice.json"
self.forex_url = "https://api.exchangerate-api.com/v4/latest/USD"
def fetch_market_summary(self) -> List[RealTimeDataPoint]:
"""
Fetch basic market data
Returns:
List of RealTimeDataPoint objects with financial data
"""
logger.info("Fetching market summary")
data_points = []
# Fetch Bitcoin price
try:
response = requests.get(self.crypto_url, timeout=10)
response.raise_for_status()
btc_data = response.json()
btc_price = btc_data['bpi']['USD']['rate']
btc_point = RealTimeDataPoint(
feed_type=DataFeedType.FINANCIAL,
source="CoinDesk",
timestamp=datetime.now(),
title="Bitcoin Price",
content=f"Bitcoin (BTC): {btc_price}",
metadata={
'currency': 'USD',
'asset': 'Bitcoin',
'symbol': 'BTC'
}
)
data_points.append(btc_point)
except Exception as e:
logger.error(f"Error fetching Bitcoin data: {e}")
# Fetch basic forex data
try:
response = requests.get(self.forex_url, timeout=10)
response.raise_for_status()
forex_data = response.json()
eur_rate = forex_data['rates'].get('EUR', 'N/A')
gbp_rate = forex_data['rates'].get('GBP', 'N/A')
forex_point = RealTimeDataPoint(
feed_type=DataFeedType.FINANCIAL,
source="ExchangeRate-API",
timestamp=datetime.now(),
title="Currency Exchange",
content=f"USD/EUR: {eur_rate}, USD/GBP: {gbp_rate}",
metadata={
'base_currency': 'USD',
'eur_rate': eur_rate,
'gbp_rate': gbp_rate
}
)
data_points.append(forex_point)
except Exception as e:
logger.error(f"Error fetching forex data: {e}")
return data_points
class RealTimeDataProcessor:
"""Process and contextualize real-time data for artistic inspiration"""
def __init__(self):
"""Initialize the data processor"""
self.cache = DataFeedCache()
self.weather_fetcher = WeatherDataFetcher()
self.news_fetcher = NewsDataFetcher()
self.financial_fetcher = FinancialDataFetcher()
# Mood and theme mappings
self.mood_keywords = {
'positive': ['sunny', 'clear', 'bright', 'growth', 'success', 'celebration', 'victory'],
'negative': ['storm', 'rain', 'decline', 'crisis', 'conflict', 'tragedy', 'loss'],
'neutral': ['cloudy', 'stable', 'steady', 'normal', 'routine', 'regular'],
'dramatic': ['thunderstorm', 'breaking', 'urgent', 'major', 'significant', 'dramatic'],
'peaceful': ['calm', 'gentle', 'quiet', 'serene', 'peaceful', 'tranquil']
}
def fetch_realtime_context(
self,
include_weather: bool = False,
weather_city: str = "New York",
include_news: bool = False,
news_category: str = "general",
max_news: int = 3,
include_financial: bool = False,
weather_api_key: Optional[str] = None,
news_api_key: Optional[str] = None
) -> RealTimeContext:
"""
Fetch and process real-time data from multiple sources
Args:
include_weather: Whether to include weather data
weather_city: City for weather data
include_news: Whether to include news data
news_category: Category of news to fetch
max_news: Maximum number of news items
include_financial: Whether to include financial data
weather_api_key: Optional weather API key
news_api_key: Optional news API key
Returns:
RealTimeContext with processed data
"""
logger.info("Fetching real-time context")
data_points = []
# Fetch weather data
if include_weather:
cache_key = f"weather_{weather_city}"
cached_weather = self.cache.get("weather", {"city": weather_city})
if cached_weather:
data_points.append(cached_weather)
else:
if weather_api_key:
self.weather_fetcher.api_key = weather_api_key
weather_data = self.weather_fetcher.fetch_weather(weather_city)
data_points.append(weather_data)
self.cache.set("weather", {"city": weather_city}, weather_data)
# Fetch news data
if include_news:
cache_key = f"news_{news_category}_{max_news}"
cached_news = self.cache.get("news", {"category": news_category, "max": max_news})
if cached_news:
data_points.extend(cached_news)
else:
if news_api_key:
self.news_fetcher.api_key = news_api_key
news_data = self.news_fetcher.fetch_news_headlines(news_category, max_news)
data_points.extend(news_data)
self.cache.set("news", {"category": news_category, "max": max_news}, news_data)
# Fetch financial data
if include_financial:
cached_financial = self.cache.get("financial", {})
if cached_financial:
data_points.extend(cached_financial)
else:
financial_data = self.financial_fetcher.fetch_market_summary()
data_points.extend(financial_data)
self.cache.set("financial", {}, financial_data)
# Process the collected data
return self._process_data_points(data_points)
def _process_data_points(self, data_points: List[RealTimeDataPoint]) -> RealTimeContext:
"""Process data points into artistic context"""
if not data_points:
return RealTimeContext(
data_points=[],
summary="No real-time data available",
mood_indicators=[],
key_themes=[],
temporal_context="",
artistic_inspiration=""
)
# Generate summary
summaries = []
for dp in data_points:
summaries.append(f"{dp.title}: {dp.content}")
summary = "; ".join(summaries)
# Extract mood indicators
mood_indicators = self._extract_mood_indicators(data_points)
# Extract key themes
key_themes = self._extract_key_themes(data_points)
# Generate temporal context
temporal_context = self._generate_temporal_context(data_points)
# Generate artistic inspiration
artistic_inspiration = self._generate_artistic_inspiration(data_points, mood_indicators, key_themes)
return RealTimeContext(
data_points=data_points,
summary=summary,
mood_indicators=mood_indicators,
key_themes=key_themes,
temporal_context=temporal_context,
artistic_inspiration=artistic_inspiration
)
def _extract_mood_indicators(self, data_points: List[RealTimeDataPoint]) -> List[str]:
"""Extract mood indicators from data points"""
moods = []
for dp in data_points:
content_lower = dp.content.lower()
# Check weather mood
if dp.feed_type == DataFeedType.WEATHER:
weather_mood = dp.metadata.get('mood', '')
if weather_mood:
moods.append(weather_mood)
# Check content for mood keywords
for mood, keywords in self.mood_keywords.items():
if any(keyword in content_lower for keyword in keywords):
moods.append(mood)
break
return list(set(moods)) # Remove duplicates
def _extract_key_themes(self, data_points: List[RealTimeDataPoint]) -> List[str]:
"""Extract key themes from data points"""
themes = []
for dp in data_points:
if dp.feed_type == DataFeedType.WEATHER:
themes.append("nature")
themes.append("environment")
elif dp.feed_type == DataFeedType.NEWS:
themes.append("current events")
themes.append("society")
elif dp.feed_type == DataFeedType.FINANCIAL:
themes.append("economy")
themes.append("markets")
return list(set(themes))
def _generate_temporal_context(self, data_points: List[RealTimeDataPoint]) -> str:
"""Generate temporal context description"""
now = datetime.now()
time_desc = now.strftime("%A, %B %d, %Y at %I:%M %p")
return f"Real-time context captured on {time_desc}"
def _generate_artistic_inspiration(
self,
data_points: List[RealTimeDataPoint],
mood_indicators: List[str],
key_themes: List[str]
) -> str:
"""Generate artistic inspiration text from processed data"""
inspiration_parts = []
# Add mood-based inspiration
if mood_indicators:
mood_text = ", ".join(mood_indicators)
inspiration_parts.append(f"reflecting a {mood_text} atmosphere")
# Add theme-based inspiration
if key_themes:
theme_text = " and ".join(key_themes)
inspiration_parts.append(f"inspired by {theme_text}")
# Add specific data inspirations
for dp in data_points:
if dp.feed_type == DataFeedType.WEATHER:
weather_desc = dp.metadata.get('weather_description', '')
if weather_desc:
inspiration_parts.append(f"with {weather_desc} weather influences")
elif dp.feed_type == DataFeedType.NEWS:
inspiration_parts.append("capturing the pulse of current events")
elif dp.feed_type == DataFeedType.FINANCIAL:
inspiration_parts.append("reflecting market dynamics and economic energy")
if inspiration_parts:
return ", ".join(inspiration_parts)
else:
return "drawing from the current moment in time"
|