File size: 12,319 Bytes
338d95d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
#!/usr/bin/env python3
"""
CompI Phase 1.D: Command-Line Quality Evaluation Tool

Command-line interface for batch evaluation and analysis of generated images.

Usage:
    python src/generators/compi_phase1d_cli_evaluation.py --help
    python src/generators/compi_phase1d_cli_evaluation.py --analyze
    python src/generators/compi_phase1d_cli_evaluation.py --batch-score 4 3 4 4 3
"""

import os
import argparse
import json
from datetime import datetime
from pathlib import Path
from typing import Dict, List

import pandas as pd
from PIL import Image

# Import functions from the main evaluation module
from compi_phase1d_evaluate_quality import (
    parse_filename, get_image_metrics, load_existing_evaluations,
    save_evaluation, EVALUATION_CRITERIA, OUTPUT_DIR, EVAL_CSV
)

def setup_args():
    """Setup command line arguments."""
    parser = argparse.ArgumentParser(
        description="CompI Phase 1.D: Command-Line Quality Evaluation",
        formatter_class=argparse.RawDescriptionHelpFormatter,
        epilog="""
Examples:
  # Analyze existing evaluations
  python %(prog)s --analyze
  
  # Batch score all unevaluated images (prompt_match, style, mood, quality, appeal)
  python %(prog)s --batch-score 4 3 4 4 3 --notes "Batch evaluation - good quality"
  
  # Generate detailed report
  python %(prog)s --report --output evaluation_report.txt
  
  # List unevaluated images
  python %(prog)s --list-unevaluated
        """
    )
    
    parser.add_argument("--output-dir", default=OUTPUT_DIR, 
                       help="Directory containing generated images")
    
    # Analysis commands
    parser.add_argument("--analyze", action="store_true",
                       help="Display evaluation summary and statistics")
    
    parser.add_argument("--report", action="store_true",
                       help="Generate detailed evaluation report")
    
    parser.add_argument("--output", "-o", 
                       help="Output file for report (default: stdout)")
    
    # Batch evaluation
    parser.add_argument("--batch-score", nargs=5, type=int, metavar=("PROMPT", "STYLE", "MOOD", "QUALITY", "APPEAL"),
                       help="Batch score all unevaluated images (1-5 for each criteria)")
    
    parser.add_argument("--notes", default="CLI batch evaluation",
                       help="Notes for batch evaluation")
    
    # Listing commands
    parser.add_argument("--list-all", action="store_true",
                       help="List all images with evaluation status")
    
    parser.add_argument("--list-evaluated", action="store_true", 
                       help="List only evaluated images")
    
    parser.add_argument("--list-unevaluated", action="store_true",
                       help="List only unevaluated images")
    
    # Filtering
    parser.add_argument("--style", help="Filter by style")
    parser.add_argument("--mood", help="Filter by mood")
    
    return parser.parse_args()

def load_images(output_dir: str) -> List[Dict]:
    """Load and parse all images from output directory."""
    if not os.path.exists(output_dir):
        print(f"❌ Output directory '{output_dir}' not found!")
        return []
    
    image_files = [f for f in os.listdir(output_dir) if f.lower().endswith('.png')]
    parsed_images = []
    
    for fname in image_files:
        metadata = parse_filename(fname)
        if metadata:
            parsed_images.append(metadata)
    
    return parsed_images

def filter_images(images: List[Dict], style: str = None, mood: str = None) -> List[Dict]:
    """Filter images by style and/or mood."""
    filtered = images
    
    if style:
        filtered = [img for img in filtered if img.get('style', '').lower() == style.lower()]
    
    if mood:
        filtered = [img for img in filtered if img.get('mood', '').lower() == mood.lower()]
    
    return filtered

def analyze_evaluations(existing_evals: Dict):
    """Display evaluation analysis."""
    if not existing_evals:
        print("❌ No evaluations found.")
        return
    
    df = pd.DataFrame.from_dict(existing_evals, orient='index')
    
    print("πŸ“Š CompI Phase 1.D - Evaluation Analysis")
    print("=" * 50)
    print(f"Total Evaluated Images: {len(df)}")
    print()
    
    # Score statistics
    print("πŸ“ˆ Score Statistics:")
    for criterion_key, criterion_info in EVALUATION_CRITERIA.items():
        if criterion_key in df.columns:
            mean_score = df[criterion_key].mean()
            std_score = df[criterion_key].std()
            min_score = df[criterion_key].min()
            max_score = df[criterion_key].max()
            
            print(f"  {criterion_info['name']:20}: {mean_score:.2f} Β± {std_score:.2f} (range: {min_score}-{max_score})")
    
    print()
    
    # Style analysis
    if 'style' in df.columns and 'prompt_match' in df.columns:
        print("🎨 Top Performing Styles (by Prompt Match):")
        style_scores = df.groupby('style')['prompt_match'].mean().sort_values(ascending=False)
        for style, score in style_scores.head(5).items():
            print(f"  {style:15}: {score:.2f}")
        print()
    
    # Mood analysis  
    if 'mood' in df.columns and 'creative_appeal' in df.columns:
        print("🌟 Top Performing Moods (by Creative Appeal):")
        mood_scores = df.groupby('mood')['creative_appeal'].mean().sort_values(ascending=False)
        for mood, score in mood_scores.head(5).items():
            print(f"  {mood:15}: {score:.2f}")
        print()

def generate_detailed_report(existing_evals: Dict) -> str:
    """Generate detailed evaluation report."""
    if not existing_evals:
        return "No evaluations found."
    
    df = pd.DataFrame.from_dict(existing_evals, orient='index')
    
    report_lines = [
        "# CompI Phase 1.D - Detailed Evaluation Report",
        f"Generated: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}",
        f"Total Images Evaluated: {len(df)}",
        "",
        "## Overall Performance Summary"
    ]
    
    # Overall statistics
    for criterion_key, criterion_info in EVALUATION_CRITERIA.items():
        if criterion_key in df.columns:
            mean_score = df[criterion_key].mean()
            std_score = df[criterion_key].std()
            report_lines.append(f"- **{criterion_info['name']}**: {mean_score:.2f} Β± {std_score:.2f}")
    
    # Distribution analysis
    report_lines.extend([
        "",
        "## Score Distribution Analysis"
    ])
    
    for criterion_key, criterion_info in EVALUATION_CRITERIA.items():
        if criterion_key in df.columns:
            scores = df[criterion_key]
            report_lines.extend([
                f"",
                f"### {criterion_info['name']}",
                f"- Mean: {scores.mean():.2f}",
                f"- Median: {scores.median():.2f}",
                f"- Mode: {scores.mode().iloc[0] if not scores.mode().empty else 'N/A'}",
                f"- Range: {scores.min()}-{scores.max()}",
                f"- Distribution: " + " | ".join([f"{i}β˜…: {(scores == i).sum()}" for i in range(1, 6)])
            ])
    
    # Style/Mood performance
    if 'style' in df.columns:
        report_lines.extend([
            "",
            "## Style Performance Analysis"
        ])
        
        for criterion_key in EVALUATION_CRITERIA.keys():
            if criterion_key in df.columns:
                style_performance = df.groupby('style')[criterion_key].agg(['mean', 'count']).sort_values('mean', ascending=False)
                report_lines.extend([
                    f"",
                    f"### {EVALUATION_CRITERIA[criterion_key]['name']} by Style",
                ])
                
                for style, (mean_score, count) in style_performance.iterrows():
                    report_lines.append(f"- {style}: {mean_score:.2f} (n={count})")
    
    # Recommendations
    report_lines.extend([
        "",
        "## Recommendations",
        "",
        "### Areas for Improvement"
    ])
    
    # Find lowest scoring criteria
    criterion_means = {}
    for criterion_key, criterion_info in EVALUATION_CRITERIA.items():
        if criterion_key in df.columns:
            criterion_means[criterion_info['name']] = df[criterion_key].mean()
    
    if criterion_means:
        lowest_criteria = sorted(criterion_means.items(), key=lambda x: x[1])[:2]
        for criterion_name, score in lowest_criteria:
            report_lines.append(f"- Focus on improving **{criterion_name}** (current: {score:.2f}/5)")
    
    report_lines.extend([
        "",
        "### Best Practices",
        "- Continue systematic evaluation for trend analysis",
        "- Experiment with parameter adjustments for low-scoring areas", 
        "- Consider A/B testing different generation approaches",
        "- Document successful style/mood combinations for reuse"
    ])
    
    return "\n".join(report_lines)

def batch_evaluate_images(images: List[Dict], scores: List[int], notes: str, output_dir: str):
    """Batch evaluate unevaluated images."""
    existing_evals = load_existing_evaluations()
    unevaluated = [img for img in images if img['filename'] not in existing_evals]
    
    if not unevaluated:
        print("βœ… All images are already evaluated!")
        return
    
    print(f"πŸ“¦ Batch evaluating {len(unevaluated)} images...")
    
    # Map scores to criteria
    criteria_keys = list(EVALUATION_CRITERIA.keys())
    score_dict = dict(zip(criteria_keys, scores))
    
    for i, img_data in enumerate(unevaluated):
        fname = img_data["filename"]
        img_path = os.path.join(output_dir, fname)
        
        try:
            metrics = get_image_metrics(img_path)
            save_evaluation(fname, img_data, score_dict, notes, metrics)
            print(f"  βœ… Evaluated: {fname}")
        except Exception as e:
            print(f"  ❌ Error evaluating {fname}: {e}")
    
    print(f"πŸŽ‰ Batch evaluation completed!")

def list_images(images: List[Dict], existing_evals: Dict, show_evaluated: bool = True, show_unevaluated: bool = True):
    """List images with evaluation status."""
    print(f"πŸ“‹ Image List ({len(images)} total)")
    print("-" * 80)
    
    for img_data in images:
        fname = img_data["filename"]
        is_evaluated = fname in existing_evals
        
        if (show_evaluated and is_evaluated) or (show_unevaluated and not is_evaluated):
            status = "βœ…" if is_evaluated else "❌"
            prompt = img_data.get('prompt', 'unknown')[:30]
            style = img_data.get('style', 'unknown')[:15]
            mood = img_data.get('mood', 'unknown')[:15]
            
            print(f"{status} {fname}")
            print(f"    Prompt: {prompt}... | Style: {style} | Mood: {mood}")
            
            if is_evaluated:
                eval_data = existing_evals[fname]
                scores = [f"{k}:{eval_data.get(k, 'N/A')}" for k in EVALUATION_CRITERIA.keys() if k in eval_data]
                print(f"    Scores: {' | '.join(scores[:3])}...")
            print()

def main():
    """Main CLI function."""
    args = setup_args()
    
    # Load images
    images = load_images(args.output_dir)
    if not images:
        return
    
    # Apply filters
    images = filter_images(images, args.style, args.mood)
    
    # Load existing evaluations
    existing_evals = load_existing_evaluations()
    
    # Execute commands
    if args.analyze:
        analyze_evaluations(existing_evals)
    
    elif args.report:
        report = generate_detailed_report(existing_evals)
        if args.output:
            with open(args.output, 'w', encoding='utf-8') as f:
                f.write(report)
            print(f"πŸ“„ Report saved to: {args.output}")
        else:
            print(report)
    
    elif args.batch_score:
        batch_evaluate_images(images, args.batch_score, args.notes, args.output_dir)
    
    elif args.list_all:
        list_images(images, existing_evals, True, True)
    
    elif args.list_evaluated:
        list_images(images, existing_evals, True, False)
    
    elif args.list_unevaluated:
        list_images(images, existing_evals, False, True)
    
    else:
        print("❓ No command specified. Use --help for usage information.")

if __name__ == "__main__":
    main()