File size: 10,351 Bytes
f584ef2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
244cc53
 
f584ef2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
import os
import pandas as pd
import pickle
import numpy as np
from smolagents import tool
from rank_bm25 import BM25Okapi
from dotenv import load_dotenv
from smolagents import CodeAgent, LiteLLMModel
from unidecode import unidecode
import numpy as np

load_dotenv()

# Global variables for BM25 model
_bm25_model = None
_precomputed_titles = None
_dataset_df = None
_llm_translator = None

def _initialize_retrieval_system():
    """Initialize the retrieval system with BM25 model and dataset"""
    global _bm25_model, _precomputed_titles, _dataset_df, _llm_translator
    
    # Load dataset if not already loaded
    if _dataset_df is None:
        try:
            _dataset_df = pd.read_csv('filtered_dataset.csv')
            print(f"✅ Loaded dataset with {len(_dataset_df)} entries")
        except FileNotFoundError:
            raise Exception("filtered_dataset.csv not found. Please ensure the dataset file exists.")
    
    # Initialize LLM translator if not already initialized
    if _llm_translator is None:
        try:
            model = LiteLLMModel(
                model_id="gemini/gemini-2.5-flash-preview-05-20",
                api_key=os.getenv("GEMINI_API_KEY")
            )
            _llm_translator = CodeAgent(tools=[], model=model, max_steps=1)
            print("✅ LLM translator initialized")
        except Exception as e:
            print(f"⚠️  Error initializing LLM translator: {e}")
    
    # Load pre-computed BM25 model if available
    if _bm25_model is None:
        try:
            with open('bm25_data.pkl', 'rb') as f:
                bm25_data = pickle.load(f)
                _bm25_model = bm25_data['bm25_model']
                _precomputed_titles = bm25_data['titles']
                print(f"✅ Loaded pre-computed BM25 model for {len(_precomputed_titles)} datasets")
        except FileNotFoundError:
            print("⚠️  Pre-computed BM25 model not found. Will compute at runtime.")
        except Exception as e:
            print(f"⚠️  Error loading pre-computed BM25 model: {e}")

def _translate_query_llm(query, target_lang='fr'):
    """Translate query using LLM"""
    global _llm_translator
    
    if _llm_translator is None:
        return query, 'unknown'
    
    try:
        if target_lang == 'fr':
            target_language = "French"
        elif target_lang == 'en':
            target_language = "English"
        else:
            target_language = target_lang
        
        translation_prompt = f"""
        Translate the following text to {target_language}. 
        If the text is already in {target_language}, return it as is.
        Only return the translated text, nothing else.
        
        Text to translate: "{query}"
        """
        
        response = _llm_translator.run(translation_prompt)
        translated_text = str(response).strip().strip('"').strip("'")
        
        # Simple language detection
        if query.lower() == translated_text.lower():
            source_lang = target_lang
        else:
            source_lang = 'en' if target_lang == 'fr' else 'fr'
        
        return translated_text, source_lang
    
    except Exception as e:
        print(f"LLM translation error: {e}")
        return query, 'unknown'

def _simple_keyword_preprocessing(text):
    """Simple preprocessing for keyword matching - handles case, accents and basic plurals"""
    text = unidecode(str(text).lower())
    
    words = text.split()
    processed_words = []
    
    for word in words:
        if word.endswith('s') and len(word) > 3 and not word.endswith('ss'):
            word = word[:-1]
        elif word.endswith('x') and len(word) > 3:
            word = word[:-1]
        processed_words.append(word)
    
    return processed_words

@tool
def search_datasets(query: str, top_k: int = 5) -> str:
    """
    Search for relevant datasets in the French public data catalog using BM25-based keyword matching.

    Args:
        query: The search query describing what kind of dataset you're looking for
        top_k: Number of top results to return (default: 5)

    Returns:
        A formatted string containing the top matching datasets with their titles, URLs, and relevance scores
    """
    try:
        # Initialize the retrieval system
        _initialize_retrieval_system()
        
        global _bm25_model, _precomputed_titles, _dataset_df
        
        # Translate query to French for better matching
        translated_query, original_lang = _translate_query_llm(query, target_lang='fr')
        
        # Combine original and translated queries for search
        search_queries = [query, translated_query] if query != translated_query else [query]
        
        # Get dataset titles
        dataset_titles = _dataset_df['title'].fillna('').tolist()
        
        # Use pre-computed BM25 model if available and matches current dataset
        if (_bm25_model is not None and _precomputed_titles is not None and 
            len(dataset_titles) == len(_precomputed_titles) and dataset_titles == _precomputed_titles):
            bm25 = _bm25_model
        else:
            # Build BM25 model at runtime
            processed_titles = [_simple_keyword_preprocessing(title) for title in dataset_titles]
            bm25 = BM25Okapi(processed_titles)
        
        # Get scores for all search queries and find best matches
        all_scores = []
        for search_query in search_queries:
            try:
                processed_query = _simple_keyword_preprocessing(search_query)
                scores = bm25.get_scores(processed_query)
                all_scores.append(scores)
            except Exception as e:
                print(f"Error processing query '{search_query}': {e}")
                continue
        
        if not all_scores:
            return "Error: Could not process any search queries"
        
        # Combine scores (take maximum across all queries)
        combined_scores = all_scores[0]
        for scores in all_scores[1:]:
            combined_scores = np.maximum(combined_scores, scores)
        
        # Get top-k results
        top_indices = combined_scores.argsort()[-top_k:][::-1]
        
        # Format results
        results = []
        results.append(f"Top {top_k} datasets for query: '{query}'")
        if query != translated_query:
            results.append(f"(Translated to French: '{translated_query}')")
        results.append("")
        
        for i, idx in enumerate(top_indices, 1):
            score = combined_scores[idx]
            title = _dataset_df.iloc[idx]['title']
            url = _dataset_df.iloc[idx]['url']
            organization = _dataset_df.iloc[idx].get('organization', 'N/A')
            
            results.append(f"{i}. Score: {score:.2f}")
            results.append(f"   Title: {title}")
            results.append(f"   URL: {url}")
            results.append(f"   Organization: {organization}")
            results.append("")
        
        return "\n".join(results)
        
    except Exception as e:
        return f"Error during dataset search: {str(e)}"

@tool 
def get_dataset_info(dataset_url: str) -> str:
    """
    Get detailed information about a specific dataset from its data.gouv.fr URL.

    Args:
        dataset_url: The URL of the dataset page on data.gouv.fr

    Returns:
        Detailed information about the dataset including title, description, organization, and metadata
    """
    try:
        _initialize_retrieval_system()
        
        global _dataset_df
        
        # Find the dataset in our catalog
        matching_rows = _dataset_df[_dataset_df['url'] == dataset_url]
        
        if matching_rows.empty:
            return f"Dataset not found in catalog for URL: {dataset_url}"
        
        dataset = matching_rows.iloc[0]
        
        # Format the dataset information
        info_lines = []
        info_lines.append("=== DATASET INFORMATION ===")
        info_lines.append(f"Title: {dataset.get('title', 'N/A')}")
        info_lines.append(f"URL: {dataset.get('url', 'N/A')}")
        info_lines.append(f"Organization: {dataset.get('organization', 'N/A')}")
        
        if 'description' in dataset and pd.notna(dataset['description']):
            description = str(dataset['description'])
            if len(description) > 500:
                description = description[:500] + "..."
            info_lines.append(f"Description: {description}")
        
        if 'tags' in dataset and pd.notna(dataset['tags']):
            info_lines.append(f"Tags: {dataset['tags']}")
            
        if 'license' in dataset and pd.notna(dataset['license']):
            info_lines.append(f"License: {dataset['license']}")
            
        if 'temporal_coverage' in dataset and pd.notna(dataset['temporal_coverage']):
            info_lines.append(f"Temporal Coverage: {dataset['temporal_coverage']}")
            
        if 'spatial_coverage' in dataset and pd.notna(dataset['spatial_coverage']):
            info_lines.append(f"Spatial Coverage: {dataset['spatial_coverage']}")
            
        if 'quality_score' in dataset and pd.notna(dataset['quality_score']):
            info_lines.append(f"Quality Score: {dataset['quality_score']}")
        
        return "\n".join(info_lines)
        
    except Exception as e:
        return f"Error getting dataset info: {str(e)}"

@tool
def get_random_quality_dataset() -> str:
    """
    Get a random high-quality dataset from the catalog, weighted by quality score.

    Returns:
        Information about a randomly selected high-quality dataset
    """
    try:
        _initialize_retrieval_system()
        
        global _dataset_df
        
        # Use quality_score as weights for random selection
        if 'quality_score' in _dataset_df.columns:
            weights = _dataset_df['quality_score'].fillna(0)
            weights = weights - weights.min() + 0.1  # Shift to make all positive
        else:
            weights = None
        
        # Randomly sample one dataset weighted by quality
        selected_row = _dataset_df.sample(n=1, weights=weights).iloc[0]
        
        # Return dataset info
        return get_dataset_info(selected_row['url'])
        
    except Exception as e:
        return f"Error getting random dataset: {str(e)}"