File size: 20,364 Bytes
f584ef2 2dd2794 f584ef2 2dd2794 f584ef2 2dd2794 f584ef2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 |
import os
import pandas as pd
import json
import glob
from smolagents import tool
import matplotlib.pyplot as plt
import seaborn as sns
from pathlib import Path
import numpy as np
@tool
def load_previous_dataset() -> pd.DataFrame:
"""
Load the dataset that was used in the previous analysis.
Returns:
The pandas DataFrame that was used in the previous report generation
"""
try:
# Look for saved dataset in generated_data folder
dataset_files = glob.glob('generated_data/*dataset*.csv') + glob.glob('generated_data/*data*.csv')
if not dataset_files:
# Try to find any CSV file in generated_data
csv_files = glob.glob('generated_data/*.csv')
if csv_files:
dataset_files = csv_files
if not dataset_files:
raise Exception("No dataset found in generated_data folder")
# Use the most recent dataset file
latest_file = max(dataset_files, key=os.path.getctime)
df = pd.read_csv(latest_file)
print(f"✅ Loaded dataset from {latest_file} with {len(df)} rows and {len(df.columns)} columns")
return df
except Exception as e:
raise Exception(f"Error loading previous dataset: {str(e)}")
@tool
def get_dataset_summary(df: pd.DataFrame) -> str:
"""
Get a comprehensive summary of the dataset structure and content.
Args:
df: The pandas DataFrame to analyze
Returns:
A formatted string with dataset summary information
"""
try:
summary_lines = []
summary_lines.append("=== DATASET SUMMARY ===")
summary_lines.append(f"Shape: {df.shape[0]} rows × {df.shape[1]} columns")
summary_lines.append("")
summary_lines.append("Column Information:")
for col in df.columns:
dtype = str(df[col].dtype)
non_null = df[col].count()
null_count = df[col].isnull().sum()
unique_count = df[col].nunique()
summary_lines.append(f" • {col}: {dtype}, {non_null} non-null, {null_count} null, {unique_count} unique")
# Show sample values for categorical columns
if df[col].dtype == 'object' and unique_count <= 10:
sample_values = df[col].value_counts().head(5).index.tolist()
summary_lines.append(f" Sample values: {sample_values}")
summary_lines.append("")
summary_lines.append("First 3 rows:")
summary_lines.append(df.head(3).to_string())
return "\n".join(summary_lines)
except Exception as e:
return f"Error analyzing dataset: {str(e)}"
@tool
def create_followup_visualization(df: pd.DataFrame, chart_type: str, x_column: str, y_column: str = None, title: str = "Follow-up Analysis", filename: str = "followup_chart.png") -> str:
"""
Create a visualization for follow-up analysis.
Args:
df: The pandas DataFrame to visualize
chart_type: Type of chart ('bar', 'line', 'scatter', 'histogram', 'box', 'pie')
x_column: Column name for x-axis
y_column: Column name for y-axis (optional for some chart types)
title: Title for the chart
filename: Name of the file to save (should end with .png)
Returns:
Path to the saved visualization file
"""
try:
plt.figure(figsize=(12, 8))
if chart_type == 'bar':
if y_column:
df_grouped = df.groupby(x_column)[y_column].sum().sort_values(ascending=False)
plt.bar(range(len(df_grouped)), df_grouped.values)
plt.xticks(range(len(df_grouped)), df_grouped.index, rotation=45)
plt.ylabel(y_column)
else:
value_counts = df[x_column].value_counts().head(10)
plt.bar(range(len(value_counts)), value_counts.values)
plt.xticks(range(len(value_counts)), value_counts.index, rotation=45)
plt.ylabel('Count')
elif chart_type == 'line':
if y_column:
df_sorted = df.sort_values(x_column)
plt.plot(df_sorted[x_column], df_sorted[y_column])
plt.ylabel(y_column)
else:
value_counts = df[x_column].value_counts().sort_index()
plt.plot(value_counts.index, value_counts.values)
plt.ylabel('Count')
elif chart_type == 'scatter':
if y_column:
plt.scatter(df[x_column], df[y_column], alpha=0.6)
plt.ylabel(y_column)
else:
raise ValueError("Scatter plot requires both x_column and y_column")
elif chart_type == 'histogram':
plt.hist(df[x_column], bins=30, alpha=0.7)
plt.ylabel('Frequency')
elif chart_type == 'box':
if y_column:
df.boxplot(column=y_column, by=x_column)
else:
plt.boxplot(df[x_column])
plt.ylabel(x_column)
elif chart_type == 'pie':
value_counts = df[x_column].value_counts().head(10)
plt.pie(value_counts.values, labels=value_counts.index, autopct='%1.1f%%')
else:
raise ValueError(f"Unsupported chart type: {chart_type}")
plt.xlabel(x_column)
plt.title(title)
plt.tight_layout()
# Save to generated_data folder
if not filename.endswith('.png'):
filename += '.png'
filepath = os.path.join('generated_data', filename)
plt.savefig(filepath, dpi=300, bbox_inches='tight')
plt.close()
return f"Visualization saved to: {filepath}"
except Exception as e:
plt.close() # Ensure plot is closed even on error
return f"Error creating visualization: {str(e)}"
@tool
def get_previous_report_content() -> str:
"""
Get the content of the previously generated report.
Returns:
The text content of the previous report for context
"""
try:
# Look for DOCX files in generated_data
report_files = glob.glob('generated_data/*.docx')
if not report_files:
return "No previous report found in generated_data folder"
# Use the most recent report file
latest_report = max(report_files, key=os.path.getctime)
# Try to extract basic text from DOCX file
docx_content = ""
try:
from docx import Document
doc = Document(latest_report)
paragraphs = []
for para in doc.paragraphs:
if para.text.strip():
paragraphs.append(para.text.strip())
docx_content = "\n".join(paragraphs[:10]) # First 10 paragraphs for context
except Exception as e:
docx_content = f"Could not extract text from DOCX: {str(e)}"
file_size = os.path.getsize(latest_report)
# Also look for any text files that might contain analysis
text_files = glob.glob('generated_data/*.txt')
text_content = ""
if text_files:
latest_text = max(text_files, key=os.path.getctime)
with open(latest_text, 'r', encoding='utf-8') as f:
text_content = f.read()
summary = f"""=== PREVIOUS REPORT CONTEXT ===
Report file: {latest_report}
File size: {file_size} bytes
Created: {os.path.getctime(latest_report)}
DOCX Report Content (first 10 paragraphs):
{docx_content}
Additional analysis content:
{text_content if text_content else 'No additional text content found'}
The report was generated from the dataset in the previous analysis.
You can use load_previous_dataset() to access the same data.
"""
return summary
except Exception as e:
return f"Error accessing previous report: {str(e)}"
@tool
def analyze_column_correlation(df: pd.DataFrame, column1: str, column2: str) -> str:
"""
Analyze correlation between two columns in the dataset.
Args:
df: The pandas DataFrame
column1: First column name
column2: Second column name
Returns:
Correlation analysis results
"""
try:
# Check if columns exist
if column1 not in df.columns or column2 not in df.columns:
return f"Error: One or both columns not found. Available columns: {list(df.columns)}"
# Convert to numeric if possible
try:
col1_numeric = pd.to_numeric(df[column1], errors='coerce')
col2_numeric = pd.to_numeric(df[column2], errors='coerce')
except:
return f"Error: Cannot convert columns to numeric for correlation analysis"
# Calculate correlation
correlation = col1_numeric.corr(col2_numeric)
# Create scatter plot
plt.figure(figsize=(10, 6))
plt.scatter(col1_numeric, col2_numeric, alpha=0.6)
plt.xlabel(column1)
plt.ylabel(column2)
plt.title(f'Correlation between {column1} and {column2}\nCorrelation coefficient: {correlation:.3f}')
# Add trend line
if not col1_numeric.isna().all() and not col2_numeric.isna().all():
z = np.polyfit(col1_numeric.dropna(), col2_numeric.dropna(), 1)
p = np.poly1d(z)
plt.plot(col1_numeric, p(col1_numeric), "r--", alpha=0.8)
plt.tight_layout()
# Save plot
filename = f'correlation_{column1}_{column2}.png'
filepath = os.path.join('generated_data', filename)
plt.savefig(filepath, dpi=300, bbox_inches='tight')
plt.close()
# Interpret correlation
if abs(correlation) > 0.7:
strength = "strong"
elif abs(correlation) > 0.4:
strength = "moderate"
elif abs(correlation) > 0.2:
strength = "weak"
else:
strength = "very weak"
direction = "positive" if correlation > 0 else "negative"
result = f"""=== CORRELATION ANALYSIS ===
Columns: {column1} vs {column2}
Correlation coefficient: {correlation:.3f}
Strength: {strength} {direction} correlation
Interpretation:
- The correlation is {strength} and {direction}
- Values closer to 1 or -1 indicate stronger linear relationships
- Values closer to 0 indicate weaker linear relationships
Visualization saved to: {filepath}
"""
return result
except Exception as e:
return f"Error in correlation analysis: {str(e)}"
@tool
def create_statistical_summary(df: pd.DataFrame, column_name: str) -> str:
"""
Create a comprehensive statistical summary with visualization for a specific column.
Args:
df: The pandas DataFrame
column_name: Name of the column to analyze
Returns:
Statistical summary and saves a visualization
"""
try:
if column_name not in df.columns:
return f"Error: Column '{column_name}' not found. Available columns: {list(df.columns)}"
column_data = df[column_name]
# Generate statistical summary
summary_lines = [f"=== STATISTICAL SUMMARY: {column_name} ==="]
if pd.api.types.is_numeric_dtype(column_data):
# Numeric column analysis
stats = column_data.describe()
summary_lines.extend([
f"Count: {stats['count']:.0f}",
f"Mean: {stats['mean']:.2f}",
f"Median: {stats['50%']:.2f}",
f"Standard Deviation: {stats['std']:.2f}",
f"Min: {stats['min']:.2f}",
f"Max: {stats['max']:.2f}",
f"25th Percentile: {stats['25%']:.2f}",
f"75th Percentile: {stats['75%']:.2f}",
])
# Create histogram and box plot
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(15, 6))
# Histogram
ax1.hist(column_data.dropna(), bins=30, alpha=0.7, color='skyblue', edgecolor='black')
ax1.set_title(f'Distribution of {column_name}')
ax1.set_xlabel(column_name)
ax1.set_ylabel('Frequency')
ax1.grid(True, alpha=0.3)
# Box plot
ax2.boxplot(column_data.dropna())
ax2.set_title(f'Box Plot of {column_name}')
ax2.set_ylabel(column_name)
ax2.grid(True, alpha=0.3)
else:
# Categorical column analysis
value_counts = column_data.value_counts()
summary_lines.extend([
f"Total unique values: {column_data.nunique()}",
f"Most frequent value: {value_counts.index[0]} ({value_counts.iloc[0]} times)",
f"Least frequent value: {value_counts.index[-1]} ({value_counts.iloc[-1]} times)",
"",
"Top 10 values:"
])
for value, count in value_counts.head(10).items():
percentage = (count / len(column_data)) * 100
summary_lines.append(f" {value}: {count} ({percentage:.1f}%)")
# Create bar chart and pie chart
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(15, 6))
# Bar chart
top_values = value_counts.head(10)
ax1.bar(range(len(top_values)), top_values.values, color='lightcoral')
ax1.set_title(f'Top 10 Values in {column_name}')
ax1.set_xlabel('Categories')
ax1.set_ylabel('Count')
ax1.set_xticks(range(len(top_values)))
ax1.set_xticklabels(top_values.index, rotation=45, ha='right')
ax1.grid(True, alpha=0.3)
# Pie chart (top 8 values + others)
top_8 = value_counts.head(8)
others_count = value_counts.iloc[8:].sum() if len(value_counts) > 8 else 0
if others_count > 0:
pie_data = list(top_8.values) + [others_count]
pie_labels = list(top_8.index) + ['Others']
else:
pie_data = top_8.values
pie_labels = top_8.index
ax2.pie(pie_data, labels=pie_labels, autopct='%1.1f%%', startangle=90)
ax2.set_title(f'Distribution of {column_name}')
plt.tight_layout()
# Save the plot
filename = f'statistical_summary_{column_name}.png'
filepath = os.path.join('generated_data', filename)
plt.savefig(filepath, dpi=300, bbox_inches='tight')
plt.close()
summary_lines.append(f"\nVisualization saved to: {filepath}")
return "\n".join(summary_lines)
except Exception as e:
return f"Error in statistical analysis: {str(e)}"
@tool
def filter_and_visualize_data(df: pd.DataFrame, filter_column: str, filter_value: str, analysis_column: str, chart_type: str = "bar") -> str:
"""
Filter the dataset and create a visualization of the filtered data.
Args:
df: The pandas DataFrame
filter_column: Column to filter by
filter_value: Value to filter for (can be partial match for string columns)
analysis_column: Column to analyze in the filtered data
chart_type: Type of chart to create ('bar', 'line', 'histogram', 'pie')
Returns:
Analysis results and saves a visualization
"""
try:
if filter_column not in df.columns:
return f"Error: Filter column '{filter_column}' not found. Available columns: {list(df.columns)}"
if analysis_column not in df.columns:
return f"Error: Analysis column '{analysis_column}' not found. Available columns: {list(df.columns)}"
# Filter the data
if df[filter_column].dtype == 'object':
# String filtering - partial match
filtered_df = df[df[filter_column].str.contains(filter_value, case=False, na=False)]
else:
# Numeric filtering - exact match
try:
filter_value_numeric = float(filter_value)
filtered_df = df[df[filter_column] == filter_value_numeric]
except ValueError:
return f"Error: Cannot convert '{filter_value}' to numeric for filtering"
if filtered_df.empty:
return f"No data found matching filter: {filter_column} = '{filter_value}'"
result_lines = [
f"=== FILTERED DATA ANALYSIS ===",
f"Filter: {filter_column} contains/equals '{filter_value}'",
f"Filtered dataset size: {len(filtered_df)} rows (from {len(df)} total)",
f"Analysis column: {analysis_column}",
""
]
# Analyze the filtered data
analysis_data = filtered_df[analysis_column]
plt.figure(figsize=(12, 8))
if chart_type == "bar":
if pd.api.types.is_numeric_dtype(analysis_data):
# For numeric data, create bins
analysis_data.hist(bins=20, alpha=0.7, color='lightblue', edgecolor='black')
plt.ylabel('Frequency')
else:
# For categorical data, show value counts
value_counts = analysis_data.value_counts().head(15)
plt.bar(range(len(value_counts)), value_counts.values, color='lightcoral')
plt.xticks(range(len(value_counts)), value_counts.index, rotation=45, ha='right')
plt.ylabel('Count')
# Add statistics to result
result_lines.extend([
f"Top value: {value_counts.index[0]} ({value_counts.iloc[0]} occurrences)",
f"Total unique values: {analysis_data.nunique()}"
])
elif chart_type == "line":
if pd.api.types.is_numeric_dtype(analysis_data):
sorted_data = analysis_data.sort_values()
plt.plot(range(len(sorted_data)), sorted_data.values, marker='o', alpha=0.7)
plt.ylabel(analysis_column)
plt.xlabel('Sorted Index')
else:
return "Line chart requires numeric data for analysis column"
elif chart_type == "histogram":
if pd.api.types.is_numeric_dtype(analysis_data):
plt.hist(analysis_data.dropna(), bins=30, alpha=0.7, color='green', edgecolor='black')
plt.ylabel('Frequency')
# Add statistics
mean_val = analysis_data.mean()
median_val = analysis_data.median()
result_lines.extend([
f"Mean: {mean_val:.2f}",
f"Median: {median_val:.2f}",
f"Standard Deviation: {analysis_data.std():.2f}"
])
else:
return "Histogram requires numeric data for analysis column"
elif chart_type == "pie":
value_counts = analysis_data.value_counts().head(10)
plt.pie(value_counts.values, labels=value_counts.index, autopct='%1.1f%%', startangle=90)
plt.title(f'{chart_type.title()} Chart: {analysis_column}\nFiltered by {filter_column} = "{filter_value}"')
plt.xlabel(analysis_column)
plt.tight_layout()
# Save the plot
filename = f'filtered_{filter_column}_{filter_value}_{analysis_column}_{chart_type}.png'
# Clean filename
filename = "".join(c for c in filename if c.isalnum() or c in ('_', '-', '.')).rstrip()
filepath = os.path.join('generated_data', filename)
plt.savefig(filepath, dpi=300, bbox_inches='tight')
plt.close()
result_lines.append(f"\nVisualization saved to: {filepath}")
return "\n".join(result_lines)
except Exception as e:
return f"Error in filtered analysis: {str(e)}" |