add: option for model and duration separately
Browse files
app.py
CHANGED
|
@@ -5,35 +5,42 @@ import numpy as np
|
|
| 5 |
import gradio as gr
|
| 6 |
from sonics import HFAudioClassifier
|
| 7 |
|
| 8 |
-
#
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
|
| 18 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 19 |
model_cache = {}
|
| 20 |
|
| 21 |
-
|
| 22 |
-
def load_model(model_name):
|
| 23 |
"""Load model if not already cached"""
|
| 24 |
-
|
| 25 |
-
|
|
|
|
| 26 |
model = HFAudioClassifier.from_pretrained(model_id)
|
| 27 |
model = model.to(device)
|
| 28 |
model.eval()
|
| 29 |
-
model_cache[
|
| 30 |
-
return model_cache[
|
| 31 |
|
| 32 |
|
| 33 |
-
def process_audio(audio_path,
|
| 34 |
"""Process audio file and return prediction"""
|
| 35 |
try:
|
| 36 |
-
model = load_model(
|
| 37 |
max_time = model.config.audio.max_time
|
| 38 |
|
| 39 |
# Load and process audio
|
|
@@ -69,11 +76,11 @@ def process_audio(audio_path, model_name):
|
|
| 69 |
return {"Error": str(e)}
|
| 70 |
|
| 71 |
|
| 72 |
-
def predict(audio_file,
|
| 73 |
"""Gradio interface function"""
|
| 74 |
if audio_file is None:
|
| 75 |
return {"Message": "Please upload an audio file"}
|
| 76 |
-
return process_audio(audio_file,
|
| 77 |
|
| 78 |
|
| 79 |
# Updated CSS with better color scheme for resource links
|
|
@@ -146,6 +153,15 @@ css = """
|
|
| 146 |
margin-top: 30px;
|
| 147 |
padding: 15px;
|
| 148 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 149 |
"""
|
| 150 |
|
| 151 |
# Create Gradio interface
|
|
@@ -199,12 +215,21 @@ with gr.Blocks(css=css, theme=gr.themes.Ocean()) as demo:
|
|
| 199 |
elem_id="audio_input"
|
| 200 |
)
|
| 201 |
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 208 |
|
| 209 |
submit_btn = gr.Button(
|
| 210 |
"✨ Analyze Audio",
|
|
@@ -240,10 +265,10 @@ with gr.Blocks(css=css, theme=gr.themes.Ocean()) as demo:
|
|
| 240 |
with gr.Accordion("Example Audio Files", open=True):
|
| 241 |
gr.Examples(
|
| 242 |
examples=[
|
| 243 |
-
["example/real_song.mp3", "SpecTTTra-γ
|
| 244 |
-
["example/fake_song.mp3", "SpecTTTra-γ
|
| 245 |
],
|
| 246 |
-
inputs=[audio_input, model_dropdown],
|
| 247 |
outputs=[output],
|
| 248 |
fn=predict,
|
| 249 |
cache_examples=True,
|
|
@@ -260,7 +285,7 @@ with gr.Blocks(css=css, theme=gr.themes.Ocean()) as demo:
|
|
| 260 |
)
|
| 261 |
|
| 262 |
# Prediction handling
|
| 263 |
-
submit_btn.click(fn=predict, inputs=[audio_input, model_dropdown], outputs=[output])
|
| 264 |
|
| 265 |
if __name__ == "__main__":
|
| 266 |
demo.launch()
|
|
|
|
| 5 |
import gradio as gr
|
| 6 |
from sonics import HFAudioClassifier
|
| 7 |
|
| 8 |
+
# Restructured model configurations for separate selectors
|
| 9 |
+
MODEL_TYPES = ["SpecTTTra-α", "SpecTTTra-β", "SpecTTTra-γ"]
|
| 10 |
+
DURATIONS = ["5s", "120s"]
|
| 11 |
+
|
| 12 |
+
# Mapping for model IDs
|
| 13 |
+
def get_model_id(model_type, duration):
|
| 14 |
+
model_map = {
|
| 15 |
+
"SpecTTTra-α-5s": "awsaf49/sonics-spectttra-alpha-5s",
|
| 16 |
+
"SpecTTTra-β-5s": "awsaf49/sonics-spectttra-beta-5s",
|
| 17 |
+
"SpecTTTra-γ-5s": "awsaf49/sonics-spectttra-gamma-5s",
|
| 18 |
+
"SpecTTTra-α-120s": "awsaf49/sonics-spectttra-alpha-120s",
|
| 19 |
+
"SpecTTTra-β-120s": "awsaf49/sonics-spectttra-beta-120s",
|
| 20 |
+
"SpecTTTra-γ-120s": "awsaf49/sonics-spectttra-gamma-120s",
|
| 21 |
+
}
|
| 22 |
+
key = f"{model_type}-{duration}"
|
| 23 |
+
return model_map[key]
|
| 24 |
|
| 25 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 26 |
model_cache = {}
|
| 27 |
|
| 28 |
+
def load_model(model_type, duration):
|
|
|
|
| 29 |
"""Load model if not already cached"""
|
| 30 |
+
model_key = f"{model_type}-{duration}"
|
| 31 |
+
if model_key not in model_cache:
|
| 32 |
+
model_id = get_model_id(model_type, duration)
|
| 33 |
model = HFAudioClassifier.from_pretrained(model_id)
|
| 34 |
model = model.to(device)
|
| 35 |
model.eval()
|
| 36 |
+
model_cache[model_key] = model
|
| 37 |
+
return model_cache[model_key]
|
| 38 |
|
| 39 |
|
| 40 |
+
def process_audio(audio_path, model_type, duration):
|
| 41 |
"""Process audio file and return prediction"""
|
| 42 |
try:
|
| 43 |
+
model = load_model(model_type, duration)
|
| 44 |
max_time = model.config.audio.max_time
|
| 45 |
|
| 46 |
# Load and process audio
|
|
|
|
| 76 |
return {"Error": str(e)}
|
| 77 |
|
| 78 |
|
| 79 |
+
def predict(audio_file, model_type, duration):
|
| 80 |
"""Gradio interface function"""
|
| 81 |
if audio_file is None:
|
| 82 |
return {"Message": "Please upload an audio file"}
|
| 83 |
+
return process_audio(audio_file, model_type, duration)
|
| 84 |
|
| 85 |
|
| 86 |
# Updated CSS with better color scheme for resource links
|
|
|
|
| 153 |
margin-top: 30px;
|
| 154 |
padding: 15px;
|
| 155 |
}
|
| 156 |
+
|
| 157 |
+
/* Selectors wrapper for side-by-side appearance */
|
| 158 |
+
.selectors-wrapper {
|
| 159 |
+
display: flex;
|
| 160 |
+
gap: 10px;
|
| 161 |
+
}
|
| 162 |
+
.selectors-wrapper > div {
|
| 163 |
+
flex: 1;
|
| 164 |
+
}
|
| 165 |
"""
|
| 166 |
|
| 167 |
# Create Gradio interface
|
|
|
|
| 215 |
elem_id="audio_input"
|
| 216 |
)
|
| 217 |
|
| 218 |
+
# Add CSS class to create a wrapper for side-by-side dropdowns
|
| 219 |
+
with gr.Row(elem_classes="selectors-wrapper"):
|
| 220 |
+
model_dropdown = gr.Dropdown(
|
| 221 |
+
choices=MODEL_TYPES,
|
| 222 |
+
value="SpecTTTra-γ",
|
| 223 |
+
label="Select Model",
|
| 224 |
+
elem_id="model_dropdown"
|
| 225 |
+
)
|
| 226 |
+
|
| 227 |
+
duration_dropdown = gr.Dropdown(
|
| 228 |
+
choices=DURATIONS,
|
| 229 |
+
value="5s",
|
| 230 |
+
label="Select Duration",
|
| 231 |
+
elem_id="duration_dropdown"
|
| 232 |
+
)
|
| 233 |
|
| 234 |
submit_btn = gr.Button(
|
| 235 |
"✨ Analyze Audio",
|
|
|
|
| 265 |
with gr.Accordion("Example Audio Files", open=True):
|
| 266 |
gr.Examples(
|
| 267 |
examples=[
|
| 268 |
+
["example/real_song.mp3", "SpecTTTra-γ", "5s"],
|
| 269 |
+
["example/fake_song.mp3", "SpecTTTra-γ", "5s"],
|
| 270 |
],
|
| 271 |
+
inputs=[audio_input, model_dropdown, duration_dropdown],
|
| 272 |
outputs=[output],
|
| 273 |
fn=predict,
|
| 274 |
cache_examples=True,
|
|
|
|
| 285 |
)
|
| 286 |
|
| 287 |
# Prediction handling
|
| 288 |
+
submit_btn.click(fn=predict, inputs=[audio_input, model_dropdown, duration_dropdown], outputs=[output])
|
| 289 |
|
| 290 |
if __name__ == "__main__":
|
| 291 |
demo.launch()
|