File size: 1,104 Bytes
3126b1e
cbe5ac9
3126b1e
 
cbe5ac9
3126b1e
 
 
 
 
 
 
cbe5ac9
3126b1e
 
 
 
 
 
 
 
 
 
 
 
479a02a
 
 
 
 
 
3126b1e
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
import tensorflow as tf
import gradio as gr
import gcvit
from gcvit.utils import get_gradcam_model, get_gradcam_prediction

def predict_fn(image, model_name):
    """A predict function that will be invoked by gradio."""
    model = getattr(gcvit, model_name)(pretrain=True)
    gradcam_model = get_gradcam_model(model)
    preds, overlay = get_gradcam_prediction(image, gradcam_model, cmap='jet', alpha=0.4, pred_index=None)
    preds = {x[1]:x[2] for x in preds}
    return [preds, overlay]

demo = gr.Interface(
    fn=predict_fn,
    inputs=[
        gr.inputs.Image(label="Input Image"),
        gr.Radio(['GCViTTiny', 'GCViTSmall', 'GCViTBase'], value='GCViTTiny', label='Model Size')
        ],
    outputs=[
        gr.outputs.Label(label="Prediction"),
        gr.inputs.Image(label="GradCAM"),
    ],
    title="Global Context Vision Transformer (GCViT) Demo",
    description="ImageNet Pretrain.",
    # examples=[
    #     ["example/african_elephant.png"],
    #     ["example/chelsea.png"],
    #     ["example/german_shepherd.jpg"],
    #     ["example/panda.jpg"],
    # ],
)
demo.launch()