Spaces:
Runtime error
Runtime error
deployment
Browse files
app.py
CHANGED
|
@@ -1,21 +1,13 @@
|
|
| 1 |
-
# import os
|
| 2 |
-
# import speech_recognition as sr
|
| 3 |
-
# import pickle
|
| 4 |
-
# import nltk
|
| 5 |
-
# from nltk.corpus import wordnet
|
| 6 |
import pandas as pd
|
| 7 |
import difflib
|
| 8 |
import gradio as gr
|
| 9 |
from transformers import pipeline
|
| 10 |
import librosa
|
|
|
|
| 11 |
|
| 12 |
# import numpy as np
|
| 13 |
|
| 14 |
-
transcriber = pipeline("automatic-speech-recognition", model="openai/whisper-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
# nltk.download('wordnet')
|
| 18 |
-
|
| 19 |
|
| 20 |
|
| 21 |
class Model_Voice_Text():
|
|
@@ -28,6 +20,7 @@ class Model_Voice_Text():
|
|
| 28 |
def __init__(self) -> None:
|
| 29 |
# self.SR_obj = sr.Recognizer()
|
| 30 |
self.KEYWORDS = ['suicide', 'urgent', 'poor', 'in-need', 'old', 'pregnant', 'refugee', 'new immigrant', 'patient', 'ill', 'sick', 'anxiety', 'anxious']
|
|
|
|
| 31 |
# self.fuzzer = fuzz.Fuzz()
|
| 32 |
|
| 33 |
# Define a function to find the number of times the word similar to the word stored in variable target_var, in a text stored in a variable named text_res
|
|
@@ -50,7 +43,35 @@ class Model_Voice_Text():
|
|
| 50 |
|
| 51 |
# Return the number of similar words
|
| 52 |
return len(similar_words)
|
| 53 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
|
| 55 |
def matching_text(self, text):
|
| 56 |
df = pd.DataFrame()
|
|
@@ -68,12 +89,17 @@ class Model_Voice_Text():
|
|
| 68 |
if ret == []:
|
| 69 |
ret.append("nothing found")
|
| 70 |
|
|
|
|
| 71 |
|
|
|
|
|
|
|
|
|
|
| 72 |
|
| 73 |
# initialize data of lists.
|
| 74 |
data = {'Keywords': [ret],
|
| 75 |
'Phone Number': ph_num,
|
| 76 |
'SIN': sin,
|
|
|
|
| 77 |
'text': text}
|
| 78 |
df = pd.DataFrame(data)
|
| 79 |
|
|
@@ -81,10 +107,6 @@ class Model_Voice_Text():
|
|
| 81 |
return df
|
| 82 |
|
| 83 |
def transcribe(self, audio_f):
|
| 84 |
-
# sr, y = audio
|
| 85 |
-
# y = y.astype(np.float32)
|
| 86 |
-
# y /= np.max(np.abs(y))
|
| 87 |
-
# print(type(audio))
|
| 88 |
text = ""
|
| 89 |
|
| 90 |
# First load the file
|
|
@@ -104,70 +126,21 @@ class Model_Voice_Text():
|
|
| 104 |
buffer = samples_total - samples_wrote
|
| 105 |
|
| 106 |
block = audio[samples_wrote : (samples_wrote + buffer)]
|
| 107 |
-
# out_filename = "split_" + str(counter) + "_" + audio_f
|
| 108 |
-
|
| 109 |
-
# Write 2 second segment
|
| 110 |
-
# sf.write(out_filename, block, sr)
|
| 111 |
-
|
| 112 |
-
# Transcribing the audio to text
|
| 113 |
text += transcriber(block)["text"]
|
| 114 |
counter += 1
|
| 115 |
samples_wrote += buffer
|
| 116 |
-
# print(counter)
|
| 117 |
-
# print(text)
|
| 118 |
|
| 119 |
return text
|
| 120 |
|
| 121 |
def voice_to_text_s(self, audio):
|
| 122 |
-
# SR_obj = self.SR_obj
|
| 123 |
-
# info = sr.AudioFile(audio)
|
| 124 |
tran_text = self.transcribe(audio)
|
| 125 |
# print(tran_text)
|
| 126 |
match_results = self.matching_text(tran_text.lower())
|
| 127 |
return match_results
|
| 128 |
|
| 129 |
-
# print(info)
|
| 130 |
-
|
| 131 |
-
# with info as source:
|
| 132 |
-
# SR_obj.adjust_for_ambient_noise(source)
|
| 133 |
-
# audio_data = SR_obj.record(source,duration=100)
|
| 134 |
-
# result = SR_obj.recognize_google(audio_data)
|
| 135 |
-
# match_results = self.matching_text(result)
|
| 136 |
-
# return match_results
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
# def voice_to_text(self, voicefolder):
|
| 140 |
-
# SR_obj = self.SR_obj
|
| 141 |
-
# text_list = []
|
| 142 |
-
# res_list = []
|
| 143 |
-
|
| 144 |
-
# for subdir, dirs, files in os.walk(voicefolder):
|
| 145 |
-
# for file in files:
|
| 146 |
-
# print(os.path.join(subdir, file))
|
| 147 |
-
# info = sr.AudioFile(os.path.join(subdir, file))
|
| 148 |
-
# print(info)
|
| 149 |
-
|
| 150 |
-
# with info as source:
|
| 151 |
-
# SR_obj.adjust_for_ambient_noise(source)
|
| 152 |
-
# audio_data = SR_obj.record(source,duration=100)
|
| 153 |
-
# result = SR_obj.recognize_google(audio_data)
|
| 154 |
-
# text_list.append(result)
|
| 155 |
-
# match_results = self.matching_text(result)
|
| 156 |
-
# res_list.append([file, match_results, result])
|
| 157 |
-
|
| 158 |
-
# return(text_list, res_list)
|
| 159 |
-
|
| 160 |
|
| 161 |
model = Model_Voice_Text()
|
| 162 |
|
| 163 |
-
# path = "/home/si-lab/Desktop/Projects/DataSciencePrpjects/Voice_records"
|
| 164 |
-
# text, results = model.voice_to_text(path)
|
| 165 |
-
|
| 166 |
-
# f = open("demofile2.txt", "a")
|
| 167 |
-
# f.write(text)
|
| 168 |
-
# f.close()
|
| 169 |
-
# df = pd.DataFrame(results)
|
| 170 |
-
# df.to_csv("list.csv", index=False)
|
| 171 |
|
| 172 |
demo = gr.Blocks()
|
| 173 |
|
|
@@ -187,10 +160,4 @@ with demo:
|
|
| 187 |
["Transcribe Microphone", "Transcribe Audio File"],
|
| 188 |
)
|
| 189 |
|
| 190 |
-
demo.launch(debug=True)
|
| 191 |
-
|
| 192 |
-
# pickle.dump(model, open("voice_txt.pkl", "wb"))
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import pandas as pd
|
| 2 |
import difflib
|
| 3 |
import gradio as gr
|
| 4 |
from transformers import pipeline
|
| 5 |
import librosa
|
| 6 |
+
import re
|
| 7 |
|
| 8 |
# import numpy as np
|
| 9 |
|
| 10 |
+
transcriber = pipeline("automatic-speech-recognition", model="openai/whisper-large-v3")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
|
| 13 |
class Model_Voice_Text():
|
|
|
|
| 20 |
def __init__(self) -> None:
|
| 21 |
# self.SR_obj = sr.Recognizer()
|
| 22 |
self.KEYWORDS = ['suicide', 'urgent', 'poor', 'in-need', 'old', 'pregnant', 'refugee', 'new immigrant', 'patient', 'ill', 'sick', 'anxiety', 'anxious']
|
| 23 |
+
self.sins = [5678, 1967, 4530, 3986, 9750, 1065, 7134, 6410, 2906, 8056, 1307, 3503, 7708, 4980, 1248, 3491, 6157, 9242, 3198, 5632]
|
| 24 |
# self.fuzzer = fuzz.Fuzz()
|
| 25 |
|
| 26 |
# Define a function to find the number of times the word similar to the word stored in variable target_var, in a text stored in a variable named text_res
|
|
|
|
| 43 |
|
| 44 |
# Return the number of similar words
|
| 45 |
return len(similar_words)
|
| 46 |
+
|
| 47 |
+
def extract_phone_number(self, text):
|
| 48 |
+
# Define a regular expression pattern to match phone numbers
|
| 49 |
+
phone_pattern = re.compile(r'\b\d{7,}\b')
|
| 50 |
+
|
| 51 |
+
# Search for the phone number in the text
|
| 52 |
+
match = re.search(phone_pattern, text)
|
| 53 |
+
|
| 54 |
+
# Check if a match is found and return the phone number
|
| 55 |
+
if match:
|
| 56 |
+
return match.group()
|
| 57 |
+
else:
|
| 58 |
+
return "000"
|
| 59 |
+
|
| 60 |
+
def extract_sin(self, text):
|
| 61 |
+
# Define a regular expression pattern to match phone numbers
|
| 62 |
+
sin_pattern = re.compile(r'\b\d{4}\b')
|
| 63 |
+
|
| 64 |
+
# Search for the phone number in the text
|
| 65 |
+
matches = re.findall(sin_pattern, text)
|
| 66 |
+
if matches:
|
| 67 |
+
return matches
|
| 68 |
+
else: return "Not detected"
|
| 69 |
+
|
| 70 |
+
def check_eligibility(self, sins_ex):
|
| 71 |
+
for number in sins_ex:
|
| 72 |
+
if number in self.sins:
|
| 73 |
+
return "Eligible"
|
| 74 |
+
return "Not Eligible"
|
| 75 |
|
| 76 |
def matching_text(self, text):
|
| 77 |
df = pd.DataFrame()
|
|
|
|
| 89 |
if ret == []:
|
| 90 |
ret.append("nothing found")
|
| 91 |
|
| 92 |
+
ph_num = self.extract_phone_number(text=text)
|
| 93 |
|
| 94 |
+
sin = self.extract_sin(text=text)
|
| 95 |
+
|
| 96 |
+
eligib = self.check_eligibility(sins_ex=sin)
|
| 97 |
|
| 98 |
# initialize data of lists.
|
| 99 |
data = {'Keywords': [ret],
|
| 100 |
'Phone Number': ph_num,
|
| 101 |
'SIN': sin,
|
| 102 |
+
'Eligible': eligib,
|
| 103 |
'text': text}
|
| 104 |
df = pd.DataFrame(data)
|
| 105 |
|
|
|
|
| 107 |
return df
|
| 108 |
|
| 109 |
def transcribe(self, audio_f):
|
|
|
|
|
|
|
|
|
|
|
|
|
| 110 |
text = ""
|
| 111 |
|
| 112 |
# First load the file
|
|
|
|
| 126 |
buffer = samples_total - samples_wrote
|
| 127 |
|
| 128 |
block = audio[samples_wrote : (samples_wrote + buffer)]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 129 |
text += transcriber(block)["text"]
|
| 130 |
counter += 1
|
| 131 |
samples_wrote += buffer
|
|
|
|
|
|
|
| 132 |
|
| 133 |
return text
|
| 134 |
|
| 135 |
def voice_to_text_s(self, audio):
|
|
|
|
|
|
|
| 136 |
tran_text = self.transcribe(audio)
|
| 137 |
# print(tran_text)
|
| 138 |
match_results = self.matching_text(tran_text.lower())
|
| 139 |
return match_results
|
| 140 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 141 |
|
| 142 |
model = Model_Voice_Text()
|
| 143 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 144 |
|
| 145 |
demo = gr.Blocks()
|
| 146 |
|
|
|
|
| 160 |
["Transcribe Microphone", "Transcribe Audio File"],
|
| 161 |
)
|
| 162 |
|
| 163 |
+
demo.launch(debug=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|