Update app.py
Browse files
app.py
CHANGED
@@ -35,24 +35,182 @@ st.set_page_config(
|
|
35 |
}
|
36 |
)
|
37 |
|
38 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
-
#
|
41 |
-
|
|
|
|
|
|
|
|
|
42 |
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
-
|
54 |
-
|
55 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
def to_radians(degrees: float) -> float:
|
57 |
return degrees * (math.pi / 180)
|
58 |
lat1, lon1 = map(to_radians, origin_coords)
|
@@ -63,14 +221,14 @@ def calculate_cargo_travel_time(origin_coords: Tuple[float, float], destination_
|
|
63 |
a = (math.sin(dlat / 2) ** 2 + math.cos(lat1) * math.cos(lat2) * math.sin(dlon / 2) ** 2)
|
64 |
c = 2 * math.asin(math.sqrt(a))
|
65 |
distance = EARTH_RADIUS_KM * c
|
66 |
-
actual_distance = distance * 1.1
|
67 |
-
flight_time = (actual_distance / cruising_speed_kmh) + 1.0
|
68 |
return round(flight_time, 2)
|
69 |
|
70 |
# Main App
|
71 |
st.title("SFT Tiny Titans 🚀 (Small but Mighty!)")
|
72 |
|
73 |
-
# Sidebar with Galleries
|
74 |
st.sidebar.header("Galleries & Shenanigans 🎨")
|
75 |
st.sidebar.subheader("Image Gallery 📸")
|
76 |
img_files = get_gallery_files(["png", "jpg", "jpeg"])
|
@@ -98,10 +256,134 @@ if selected_model != "None" and st.sidebar.button("Load Model 📂"):
|
|
98 |
st.session_state['model_loaded'] = True
|
99 |
st.rerun()
|
100 |
|
101 |
-
# Main UI with Tabs
|
102 |
tab1, tab2, tab3, tab4 = st.tabs(["Build Tiny Titan 🌱", "Fine-Tune Titan 🔧", "Test Titan 🧪", "Agentic RAG Party 🌐"])
|
103 |
|
104 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
|
106 |
with tab4:
|
107 |
st.header("Agentic RAG Party 🌐 (Party Like It’s 2099!)")
|
@@ -112,12 +394,12 @@ with tab4:
|
|
112 |
from smolagents import CodeAgent, DuckDuckGoSearchTool, VisitWebpageTool
|
113 |
from transformers import AutoModelForCausalLM
|
114 |
|
115 |
-
# Load the model
|
116 |
with st.spinner("Loading SmolLM-135M... ⏳ (Titan’s suiting up!)"):
|
117 |
model = AutoModelForCausalLM.from_pretrained("HuggingFaceTB/SmolLM-135M")
|
118 |
st.write("Model loaded! 🦸♂️ (Ready to party!)")
|
119 |
|
120 |
-
# Initialize agent
|
121 |
agent = CodeAgent(
|
122 |
model=model,
|
123 |
tools=[DuckDuckGoSearchTool(), VisitWebpageTool(), calculate_cargo_travel_time],
|
@@ -144,4 +426,4 @@ Add a random superhero catchphrase to each entry for fun!
|
|
144 |
except TypeError as e:
|
145 |
st.error(f"Agent setup failed: {str(e)} (Looks like the Titans need a tune-up!)")
|
146 |
except Exception as e:
|
147 |
-
st.error(f"Error running demo: {str(e)} (Even Batman has off days!)")
|
|
|
35 |
}
|
36 |
)
|
37 |
|
38 |
+
# Model Configuration Class
|
39 |
+
@dataclass
|
40 |
+
class ModelConfig:
|
41 |
+
name: str
|
42 |
+
base_model: str
|
43 |
+
size: str
|
44 |
+
domain: Optional[str] = None
|
45 |
+
|
46 |
+
@property
|
47 |
+
def model_path(self):
|
48 |
+
return f"models/{self.name}"
|
49 |
|
50 |
+
# Custom Dataset for SFT
|
51 |
+
class SFTDataset(Dataset):
|
52 |
+
def __init__(self, data, tokenizer, max_length=128):
|
53 |
+
self.data = data
|
54 |
+
self.tokenizer = tokenizer
|
55 |
+
self.max_length = max_length
|
56 |
|
57 |
+
def __len__(self):
|
58 |
+
return len(self.data)
|
59 |
+
|
60 |
+
def __getitem__(self, idx):
|
61 |
+
prompt = self.data[idx]["prompt"]
|
62 |
+
response = self.data[idx]["response"]
|
63 |
+
|
64 |
+
full_text = f"{prompt} {response}"
|
65 |
+
full_encoding = self.tokenizer(
|
66 |
+
full_text,
|
67 |
+
max_length=self.max_length,
|
68 |
+
padding="max_length",
|
69 |
+
truncation=True,
|
70 |
+
return_tensors="pt"
|
71 |
+
)
|
72 |
+
|
73 |
+
prompt_encoding = self.tokenizer(
|
74 |
+
prompt,
|
75 |
+
max_length=self.max_length,
|
76 |
+
padding=False,
|
77 |
+
truncation=True,
|
78 |
+
return_tensors="pt"
|
79 |
+
)
|
80 |
+
|
81 |
+
input_ids = full_encoding["input_ids"].squeeze()
|
82 |
+
attention_mask = full_encoding["attention_mask"].squeeze()
|
83 |
+
labels = input_ids.clone()
|
84 |
+
|
85 |
+
prompt_len = prompt_encoding["input_ids"].shape[1]
|
86 |
+
if prompt_len < self.max_length:
|
87 |
+
labels[:prompt_len] = -100
|
88 |
+
|
89 |
+
return {
|
90 |
+
"input_ids": input_ids,
|
91 |
+
"attention_mask": attention_mask,
|
92 |
+
"labels": labels
|
93 |
+
}
|
94 |
+
|
95 |
+
# Model Builder Class with Easter Egg Jokes
|
96 |
+
class ModelBuilder:
|
97 |
+
def __init__(self):
|
98 |
+
self.config = None
|
99 |
+
self.model = None
|
100 |
+
self.tokenizer = None
|
101 |
+
self.sft_data = None
|
102 |
+
self.jokes = ["Why did the AI go to therapy? Too many layers to unpack! 😂", "Training complete! Time for a binary coffee break. ☕"]
|
103 |
+
|
104 |
+
def load_model(self, model_path: str, config: Optional[ModelConfig] = None):
|
105 |
+
with st.spinner(f"Loading {model_path}... ⏳ (Patience, young padawan!)"):
|
106 |
+
self.model = AutoModelForCausalLM.from_pretrained(model_path)
|
107 |
+
self.tokenizer = AutoTokenizer.from_pretrained(model_path)
|
108 |
+
if self.tokenizer.pad_token is None:
|
109 |
+
self.tokenizer.pad_token = self.tokenizer.eos_token
|
110 |
+
if config:
|
111 |
+
self.config = config
|
112 |
+
st.success(f"Model loaded! 🎉 {random.choice(self.jokes)}")
|
113 |
+
return self
|
114 |
+
|
115 |
+
def fine_tune_sft(self, csv_path: str, epochs: int = 3, batch_size: int = 4):
|
116 |
+
self.sft_data = []
|
117 |
+
with open(csv_path, "r") as f:
|
118 |
+
reader = csv.DictReader(f)
|
119 |
+
for row in reader:
|
120 |
+
self.sft_data.append({"prompt": row["prompt"], "response": row["response"]})
|
121 |
+
|
122 |
+
dataset = SFTDataset(self.sft_data, self.tokenizer)
|
123 |
+
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True)
|
124 |
+
optimizer = torch.optim.AdamW(self.model.parameters(), lr=2e-5)
|
125 |
+
|
126 |
+
self.model.train()
|
127 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
128 |
+
self.model.to(device)
|
129 |
+
for epoch in range(epochs):
|
130 |
+
with st.spinner(f"Training epoch {epoch + 1}/{epochs}... ⚙️ (The AI is lifting weights!)"):
|
131 |
+
total_loss = 0
|
132 |
+
for batch in dataloader:
|
133 |
+
optimizer.zero_grad()
|
134 |
+
input_ids = batch["input_ids"].to(device)
|
135 |
+
attention_mask = batch["attention_mask"].to(device)
|
136 |
+
labels = batch["labels"].to(device)
|
137 |
+
|
138 |
+
assert input_ids.shape[0] == labels.shape[0], f"Batch size mismatch: input_ids {input_ids.shape}, labels {labels.shape}"
|
139 |
+
|
140 |
+
outputs = self.model(input_ids=input_ids, attention_mask=attention_mask, labels=labels)
|
141 |
+
loss = outputs.loss
|
142 |
+
loss.backward()
|
143 |
+
optimizer.step()
|
144 |
+
total_loss += loss.item()
|
145 |
+
st.write(f"Epoch {epoch + 1} completed. Average loss: {total_loss / len(dataloader):.4f}")
|
146 |
+
st.success(f"SFT Fine-tuning completed! 🎉 {random.choice(self.jokes)}")
|
147 |
+
return self
|
148 |
+
|
149 |
+
def save_model(self, path: str):
|
150 |
+
with st.spinner("Saving model... 💾 (Packing the AI’s suitcase!)"):
|
151 |
+
os.makedirs(os.path.dirname(path), exist_ok=True)
|
152 |
+
self.model.save_pretrained(path)
|
153 |
+
self.tokenizer.save_pretrained(path)
|
154 |
+
st.success(f"Model saved at {path}! ✅ May the force be with it.")
|
155 |
|
156 |
+
def evaluate(self, prompt: str, status_container=None):
|
157 |
+
"""Evaluate with feedback"""
|
158 |
+
self.model.eval()
|
159 |
+
if status_container:
|
160 |
+
status_container.write("Preparing to evaluate... 🧠 (Titan’s warming up its circuits!)")
|
161 |
+
logger.info(f"Evaluating prompt: {prompt}")
|
162 |
+
|
163 |
+
try:
|
164 |
+
with torch.no_grad():
|
165 |
+
inputs = self.tokenizer(prompt, return_tensors="pt", max_length=128, truncation=True).to(self.model.device)
|
166 |
+
if status_container:
|
167 |
+
status_container.write(f"Tokenized input shape: {inputs['input_ids'].shape} 📏")
|
168 |
+
|
169 |
+
outputs = self.model.generate(
|
170 |
+
**inputs,
|
171 |
+
max_new_tokens=50,
|
172 |
+
do_sample=True,
|
173 |
+
top_p=0.95,
|
174 |
+
temperature=0.7
|
175 |
+
)
|
176 |
+
if status_container:
|
177 |
+
status_container.write("Generation complete! Decoding response... 🗣")
|
178 |
+
|
179 |
+
result = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
180 |
+
logger.info(f"Generated response: {result}")
|
181 |
+
return result
|
182 |
+
except Exception as e:
|
183 |
+
logger.error(f"Evaluation error: {str(e)}")
|
184 |
+
if status_container:
|
185 |
+
status_container.error(f"Oops! Something broke: {str(e)} 💥 (Titan tripped over a wire!)")
|
186 |
+
return f"Error: {str(e)}"
|
187 |
+
|
188 |
+
# Utility Functions with Wit
|
189 |
+
def get_download_link(file_path, mime_type="text/plain", label="Download"):
|
190 |
+
with open(file_path, 'rb') as f:
|
191 |
+
data = f.read()
|
192 |
+
b64 = base64.b64encode(data).decode()
|
193 |
+
return f'<a href="data:{mime_type};base64,{b64}" download="{os.path.basename(file_path)}">{label} 📥 (Grab it before it runs away!)</a>'
|
194 |
+
|
195 |
+
def zip_directory(directory_path, zip_path):
|
196 |
+
with zipfile.ZipFile(zip_path, 'w', zipfile.ZIP_DEFLATED) as zipf:
|
197 |
+
for root, _, files in os.walk(directory_path):
|
198 |
+
for file in files:
|
199 |
+
file_path = os.path.join(root, file)
|
200 |
+
arcname = os.path.relpath(file_path, os.path.dirname(directory_path))
|
201 |
+
zipf.write(file_path, arcname)
|
202 |
|
203 |
+
def get_model_files():
|
204 |
+
return [d for d in glob.glob("models/*") if os.path.isdir(d)]
|
205 |
+
|
206 |
+
def get_gallery_files(file_types):
|
207 |
+
files = []
|
208 |
+
for ext in file_types:
|
209 |
+
files.extend(glob.glob(f"*.{ext}"))
|
210 |
+
return sorted(files)
|
211 |
+
|
212 |
+
# Cargo Travel Time Tool
|
213 |
+
def calculate_cargo_travel_time(origin_coords: Tuple[float, float], destination_coords: Tuple[float, float], cruising_speed_kmh: float = 750.0) -> float:
|
214 |
def to_radians(degrees: float) -> float:
|
215 |
return degrees * (math.pi / 180)
|
216 |
lat1, lon1 = map(to_radians, origin_coords)
|
|
|
221 |
a = (math.sin(dlat / 2) ** 2 + math.cos(lat1) * math.cos(lat2) * math.sin(dlon / 2) ** 2)
|
222 |
c = 2 * math.asin(math.sqrt(a))
|
223 |
distance = EARTH_RADIUS_KM * c
|
224 |
+
actual_distance = distance * 1.1
|
225 |
+
flight_time = (actual_distance / cruising_speed_kmh) + 1.0
|
226 |
return round(flight_time, 2)
|
227 |
|
228 |
# Main App
|
229 |
st.title("SFT Tiny Titans 🚀 (Small but Mighty!)")
|
230 |
|
231 |
+
# Sidebar with Galleries
|
232 |
st.sidebar.header("Galleries & Shenanigans 🎨")
|
233 |
st.sidebar.subheader("Image Gallery 📸")
|
234 |
img_files = get_gallery_files(["png", "jpg", "jpeg"])
|
|
|
256 |
st.session_state['model_loaded'] = True
|
257 |
st.rerun()
|
258 |
|
259 |
+
# Main UI with Tabs
|
260 |
tab1, tab2, tab3, tab4 = st.tabs(["Build Tiny Titan 🌱", "Fine-Tune Titan 🔧", "Test Titan 🧪", "Agentic RAG Party 🌐"])
|
261 |
|
262 |
+
with tab1:
|
263 |
+
st.header("Build Tiny Titan 🌱 (Assemble Your Mini-Mecha!)")
|
264 |
+
base_model = st.selectbox(
|
265 |
+
"Select Tiny Model",
|
266 |
+
["HuggingFaceTB/SmolLM-135M", "HuggingFaceTB/SmolLM-360M", "Qwen/Qwen1.5-0.5B-Chat"],
|
267 |
+
help="Pick a pint-sized powerhouse (<1 GB)! SmolLM-135M (~270 MB), SmolLM-360M (~720 MB), Qwen1.5-0.5B (~1 GB)"
|
268 |
+
)
|
269 |
+
model_name = st.text_input("Model Name", f"tiny-titan-{int(time.time())}")
|
270 |
+
domain = st.text_input("Target Domain", "general")
|
271 |
+
|
272 |
+
if st.button("Download Model ⬇️"):
|
273 |
+
config = ModelConfig(name=model_name, base_model=base_model, size="small", domain=domain)
|
274 |
+
builder = ModelBuilder()
|
275 |
+
builder.load_model(base_model, config)
|
276 |
+
builder.save_model(config.model_path)
|
277 |
+
st.session_state['builder'] = builder
|
278 |
+
st.session_state['model_loaded'] = True
|
279 |
+
st.success(f"Model downloaded and saved to {config.model_path}! 🎉 (Tiny but feisty!)")
|
280 |
+
st.rerun()
|
281 |
+
|
282 |
+
with tab2:
|
283 |
+
st.header("Fine-Tune Titan 🔧 (Teach Your Titan Some Tricks!)")
|
284 |
+
if 'builder' not in st.session_state or not st.session_state.get('model_loaded', False):
|
285 |
+
st.warning("Please build or load a Titan first! ⚠️ (No Titan, no party!)")
|
286 |
+
else:
|
287 |
+
if st.button("Generate Sample CSV 📝"):
|
288 |
+
sample_data = [
|
289 |
+
{"prompt": "What is AI?", "response": "AI is artificial intelligence, simulating human smarts in machines."},
|
290 |
+
{"prompt": "Explain machine learning", "response": "Machine learning is AI’s gym where models bulk up on data."},
|
291 |
+
{"prompt": "What is a neural network?", "response": "A neural network is a brainy AI mimicking human noggins."},
|
292 |
+
]
|
293 |
+
csv_path = f"sft_data_{int(time.time())}.csv"
|
294 |
+
with open(csv_path, "w", newline="") as f:
|
295 |
+
writer = csv.DictWriter(f, fieldnames=["prompt", "response"])
|
296 |
+
writer.writeheader()
|
297 |
+
writer.writerows(sample_data)
|
298 |
+
st.markdown(get_download_link(csv_path, "text/csv", "Download Sample CSV"), unsafe_allow_html=True)
|
299 |
+
st.success(f"Sample CSV generated as {csv_path}! ✅ (Fresh from the data oven!)")
|
300 |
+
|
301 |
+
uploaded_csv = st.file_uploader("Upload CSV for SFT", type="csv")
|
302 |
+
if uploaded_csv and st.button("Fine-Tune with Uploaded CSV 🔄"):
|
303 |
+
csv_path = f"uploaded_sft_data_{int(time.time())}.csv"
|
304 |
+
with open(csv_path, "wb") as f:
|
305 |
+
f.write(uploaded_csv.read())
|
306 |
+
new_model_name = f"{st.session_state['builder'].config.name}-sft-{int(time.time())}"
|
307 |
+
new_config = ModelConfig(
|
308 |
+
name=new_model_name,
|
309 |
+
base_model=st.session_state['builder'].config.base_model,
|
310 |
+
size="small",
|
311 |
+
domain=st.session_state['builder'].config.domain
|
312 |
+
)
|
313 |
+
st.session_state['builder'].config = new_config
|
314 |
+
with st.status("Fine-tuning Titan... ⏳ (Whipping it into shape!)", expanded=True) as status:
|
315 |
+
st.session_state['builder'].fine_tune_sft(csv_path)
|
316 |
+
st.session_state['builder'].save_model(new_config.model_path)
|
317 |
+
status.update(label="Fine-tuning completed! 🎉 (Titan’s ready to rumble!)", state="complete")
|
318 |
+
|
319 |
+
zip_path = f"{new_config.model_path}.zip"
|
320 |
+
zip_directory(new_config.model_path, zip_path)
|
321 |
+
st.markdown(get_download_link(zip_path, "application/zip", "Download Fine-Tuned Titan"), unsafe_allow_html=True)
|
322 |
+
st.rerun()
|
323 |
+
|
324 |
+
with tab3:
|
325 |
+
st.header("Test Titan 🧪 (Put Your Titan to the Test!)")
|
326 |
+
if 'builder' not in st.session_state or not st.session_state.get('model_loaded', False):
|
327 |
+
st.warning("Please build or load a Titan first! ⚠️ (No Titan, no test drive!)")
|
328 |
+
else:
|
329 |
+
if st.session_state['builder'].sft_data:
|
330 |
+
st.write("Testing with SFT Data:")
|
331 |
+
with st.spinner("Running SFT data tests... ⏳ (Titan’s flexing its brain muscles!)"):
|
332 |
+
for item in st.session_state['builder'].sft_data[:3]:
|
333 |
+
prompt = item["prompt"]
|
334 |
+
expected = item["response"]
|
335 |
+
status_container = st.empty()
|
336 |
+
generated = st.session_state['builder'].evaluate(prompt, status_container)
|
337 |
+
st.write(f"**Prompt**: {prompt}")
|
338 |
+
st.write(f"**Expected**: {expected}")
|
339 |
+
st.write(f"**Generated**: {generated} (Titan says: '{random.choice(['Bleep bloop!', 'I am groot!', '42!'])}')")
|
340 |
+
st.write("---")
|
341 |
+
status_container.empty() # Clear status after each test
|
342 |
+
|
343 |
+
test_prompt = st.text_area("Enter Test Prompt", "What is AI?")
|
344 |
+
if st.button("Run Test ▶️"):
|
345 |
+
with st.spinner("Testing your prompt... ⏳ (Titan’s pondering deeply!)"):
|
346 |
+
status_container = st.empty()
|
347 |
+
result = st.session_state['builder'].evaluate(test_prompt, status_container)
|
348 |
+
st.write(f"**Generated Response**: {result} (Titan’s wisdom unleashed!)")
|
349 |
+
status_container.empty()
|
350 |
+
|
351 |
+
if st.button("Export Titan Files 📦"):
|
352 |
+
config = st.session_state['builder'].config
|
353 |
+
app_code = f"""
|
354 |
+
import streamlit as st
|
355 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
356 |
+
|
357 |
+
model = AutoModelForCausalLM.from_pretrained("{config.model_path}")
|
358 |
+
tokenizer = AutoTokenizer.from_pretrained("{config.model_path}")
|
359 |
+
|
360 |
+
st.title("Tiny Titan Demo")
|
361 |
+
input_text = st.text_area("Enter prompt")
|
362 |
+
if st.button("Generate"):
|
363 |
+
inputs = tokenizer(input_text, return_tensors="pt")
|
364 |
+
outputs = model.generate(**inputs, max_new_tokens=50, do_sample=True, top_p=0.95, temperature=0.7)
|
365 |
+
st.write(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
366 |
+
"""
|
367 |
+
with open("titan_app.py", "w") as f:
|
368 |
+
f.write(app_code)
|
369 |
+
reqs = "streamlit\ntorch\ntransformers\n"
|
370 |
+
with open("titan_requirements.txt", "w") as f:
|
371 |
+
f.write(reqs)
|
372 |
+
readme = f"""
|
373 |
+
# Tiny Titan Demo
|
374 |
+
|
375 |
+
## How to run
|
376 |
+
1. Install requirements: `pip install -r titan_requirements.txt`
|
377 |
+
2. Run the app: `streamlit run titan_app.py`
|
378 |
+
3. Input a prompt and click "Generate". Watch the magic unfold! 🪄
|
379 |
+
"""
|
380 |
+
with open("titan_README.md", "w") as f:
|
381 |
+
f.write(readme)
|
382 |
+
|
383 |
+
st.markdown(get_download_link("titan_app.py", "text/plain", "Download App"), unsafe_allow_html=True)
|
384 |
+
st.markdown(get_download_link("titan_requirements.txt", "text/plain", "Download Requirements"), unsafe_allow_html=True)
|
385 |
+
st.markdown(get_download_link("titan_README.md", "text/markdown", "Download README"), unsafe_allow_html=True)
|
386 |
+
st.success("Titan files exported! ✅ (Ready to conquer the galaxy!)")
|
387 |
|
388 |
with tab4:
|
389 |
st.header("Agentic RAG Party 🌐 (Party Like It’s 2099!)")
|
|
|
394 |
from smolagents import CodeAgent, DuckDuckGoSearchTool, VisitWebpageTool
|
395 |
from transformers import AutoModelForCausalLM
|
396 |
|
397 |
+
# Load the model without separate tokenizer for agent
|
398 |
with st.spinner("Loading SmolLM-135M... ⏳ (Titan’s suiting up!)"):
|
399 |
model = AutoModelForCausalLM.from_pretrained("HuggingFaceTB/SmolLM-135M")
|
400 |
st.write("Model loaded! 🦸♂️ (Ready to party!)")
|
401 |
|
402 |
+
# Initialize agent without tokenizer argument
|
403 |
agent = CodeAgent(
|
404 |
model=model,
|
405 |
tools=[DuckDuckGoSearchTool(), VisitWebpageTool(), calculate_cargo_travel_time],
|
|
|
426 |
except TypeError as e:
|
427 |
st.error(f"Agent setup failed: {str(e)} (Looks like the Titans need a tune-up!)")
|
428 |
except Exception as e:
|
429 |
+
st.error(f"Error running demo: {str(e)} (Even Batman has off days!)")
|