|
|
|
import os |
|
import shutil |
|
import glob |
|
import base64 |
|
import streamlit as st |
|
import pandas as pd |
|
import torch |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
from torch.utils.data import Dataset, DataLoader |
|
import csv |
|
import time |
|
from dataclasses import dataclass |
|
from typing import Optional, Tuple |
|
import zipfile |
|
import math |
|
from PIL import Image |
|
import random |
|
import logging |
|
|
|
|
|
logging.basicConfig(level=logging.INFO) |
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
st.set_page_config( |
|
page_title="SFT Tiny Titans 🚀", |
|
page_icon="🤖", |
|
layout="wide", |
|
initial_sidebar_state="expanded", |
|
menu_items={ |
|
'Get Help': 'https://huggingface.co/awacke1', |
|
'Report a bug': 'https://huggingface.co/spaces/awacke1', |
|
'About': "Tiny Titans: Small models, big dreams, and a sprinkle of chaos! 🌌" |
|
} |
|
) |
|
|
|
|
|
@dataclass |
|
class ModelConfig: |
|
name: str |
|
base_model: str |
|
size: str |
|
domain: Optional[str] = None |
|
|
|
@property |
|
def model_path(self): |
|
return f"models/{self.name}" |
|
|
|
|
|
class SFTDataset(Dataset): |
|
def __init__(self, data, tokenizer, max_length=128): |
|
self.data = data |
|
self.tokenizer = tokenizer |
|
self.max_length = max_length |
|
|
|
def __len__(self): |
|
return len(self.data) |
|
|
|
def __getitem__(self, idx): |
|
prompt = self.data[idx]["prompt"] |
|
response = self.data[idx]["response"] |
|
|
|
full_text = f"{prompt} {response}" |
|
full_encoding = self.tokenizer( |
|
full_text, |
|
max_length=self.max_length, |
|
padding="max_length", |
|
truncation=True, |
|
return_tensors="pt" |
|
) |
|
|
|
prompt_encoding = self.tokenizer( |
|
prompt, |
|
max_length=self.max_length, |
|
padding=False, |
|
truncation=True, |
|
return_tensors="pt" |
|
) |
|
|
|
input_ids = full_encoding["input_ids"].squeeze() |
|
attention_mask = full_encoding["attention_mask"].squeeze() |
|
labels = input_ids.clone() |
|
|
|
prompt_len = prompt_encoding["input_ids"].shape[1] |
|
if prompt_len < self.max_length: |
|
labels[:prompt_len] = -100 |
|
|
|
return { |
|
"input_ids": input_ids, |
|
"attention_mask": attention_mask, |
|
"labels": labels |
|
} |
|
|
|
|
|
class ModelBuilder: |
|
def __init__(self): |
|
self.config = None |
|
self.model = None |
|
self.tokenizer = None |
|
self.sft_data = None |
|
self.jokes = ["Why did the AI go to therapy? Too many layers to unpack! 😂", "Training complete! Time for a binary coffee break. ☕"] |
|
|
|
def load_model(self, model_path: str, config: Optional[ModelConfig] = None): |
|
with st.spinner(f"Loading {model_path}... ⏳ (Patience, young padawan!)"): |
|
self.model = AutoModelForCausalLM.from_pretrained(model_path) |
|
self.tokenizer = AutoTokenizer.from_pretrained(model_path) |
|
if self.tokenizer.pad_token is None: |
|
self.tokenizer.pad_token = self.tokenizer.eos_token |
|
if config: |
|
self.config = config |
|
st.success(f"Model loaded! 🎉 {random.choice(self.jokes)}") |
|
return self |
|
|
|
def fine_tune_sft(self, csv_path: str, epochs: int = 3, batch_size: int = 4): |
|
self.sft_data = [] |
|
with open(csv_path, "r") as f: |
|
reader = csv.DictReader(f) |
|
for row in reader: |
|
self.sft_data.append({"prompt": row["prompt"], "response": row["response"]}) |
|
|
|
dataset = SFTDataset(self.sft_data, self.tokenizer) |
|
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True) |
|
optimizer = torch.optim.AdamW(self.model.parameters(), lr=2e-5) |
|
|
|
self.model.train() |
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
self.model.to(device) |
|
for epoch in range(epochs): |
|
with st.spinner(f"Training epoch {epoch + 1}/{epochs}... ⚙️ (The AI is lifting weights!)"): |
|
total_loss = 0 |
|
for batch in dataloader: |
|
optimizer.zero_grad() |
|
input_ids = batch["input_ids"].to(device) |
|
attention_mask = batch["attention_mask"].to(device) |
|
labels = batch["labels"].to(device) |
|
|
|
assert input_ids.shape[0] == labels.shape[0], f"Batch size mismatch: input_ids {input_ids.shape}, labels {labels.shape}" |
|
|
|
outputs = self.model(input_ids=input_ids, attention_mask=attention_mask, labels=labels) |
|
loss = outputs.loss |
|
loss.backward() |
|
optimizer.step() |
|
total_loss += loss.item() |
|
st.write(f"Epoch {epoch + 1} completed. Average loss: {total_loss / len(dataloader):.4f}") |
|
st.success(f"SFT Fine-tuning completed! 🎉 {random.choice(self.jokes)}") |
|
return self |
|
|
|
def save_model(self, path: str): |
|
with st.spinner("Saving model... 💾 (Packing the AI’s suitcase!)"): |
|
os.makedirs(os.path.dirname(path), exist_ok=True) |
|
self.model.save_pretrained(path) |
|
self.tokenizer.save_pretrained(path) |
|
st.success(f"Model saved at {path}! ✅ May the force be with it.") |
|
|
|
def evaluate(self, prompt: str, status_container=None): |
|
"""Evaluate with feedback""" |
|
self.model.eval() |
|
if status_container: |
|
status_container.write("Preparing to evaluate... 🧠 (Titan’s warming up its circuits!)") |
|
logger.info(f"Evaluating prompt: {prompt}") |
|
|
|
try: |
|
with torch.no_grad(): |
|
inputs = self.tokenizer(prompt, return_tensors="pt", max_length=128, truncation=True).to(self.model.device) |
|
if status_container: |
|
status_container.write(f"Tokenized input shape: {inputs['input_ids'].shape} 📏") |
|
|
|
outputs = self.model.generate( |
|
**inputs, |
|
max_new_tokens=50, |
|
do_sample=True, |
|
top_p=0.95, |
|
temperature=0.7 |
|
) |
|
if status_container: |
|
status_container.write("Generation complete! Decoding response... 🗣") |
|
|
|
result = self.tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
logger.info(f"Generated response: {result}") |
|
return result |
|
except Exception as e: |
|
logger.error(f"Evaluation error: {str(e)}") |
|
if status_container: |
|
status_container.error(f"Oops! Something broke: {str(e)} 💥 (Titan tripped over a wire!)") |
|
return f"Error: {str(e)}" |
|
|
|
|
|
def get_download_link(file_path, mime_type="text/plain", label="Download"): |
|
with open(file_path, 'rb') as f: |
|
data = f.read() |
|
b64 = base64.b64encode(data).decode() |
|
return f'<a href="data:{mime_type};base64,{b64}" download="{os.path.basename(file_path)}">{label} 📥 (Grab it before it runs away!)</a>' |
|
|
|
def zip_directory(directory_path, zip_path): |
|
with zipfile.ZipFile(zip_path, 'w', zipfile.ZIP_DEFLATED) as zipf: |
|
for root, _, files in os.walk(directory_path): |
|
for file in files: |
|
file_path = os.path.join(root, file) |
|
arcname = os.path.relpath(file_path, os.path.dirname(directory_path)) |
|
zipf.write(file_path, arcname) |
|
|
|
def get_model_files(): |
|
return [d for d in glob.glob("models/*") if os.path.isdir(d)] |
|
|
|
def get_gallery_files(file_types): |
|
files = [] |
|
for ext in file_types: |
|
files.extend(glob.glob(f"*.{ext}")) |
|
return sorted(files) |
|
|
|
|
|
def calculate_cargo_travel_time(origin_coords: Tuple[float, float], destination_coords: Tuple[float, float], cruising_speed_kmh: float = 750.0) -> float: |
|
def to_radians(degrees: float) -> float: |
|
return degrees * (math.pi / 180) |
|
lat1, lon1 = map(to_radians, origin_coords) |
|
lat2, lon2 = map(to_radians, destination_coords) |
|
EARTH_RADIUS_KM = 6371.0 |
|
dlon = lon2 - lon1 |
|
dlat = lat2 - lat1 |
|
a = (math.sin(dlat / 2) ** 2 + math.cos(lat1) * math.cos(lat2) * math.sin(dlon / 2) ** 2) |
|
c = 2 * math.asin(math.sqrt(a)) |
|
distance = EARTH_RADIUS_KM * c |
|
actual_distance = distance * 1.1 |
|
flight_time = (actual_distance / cruising_speed_kmh) + 1.0 |
|
return round(flight_time, 2) |
|
|
|
|
|
def mock_duckduckgo_search(query: str) -> str: |
|
"""Simulate a search result for luxury superhero party trends""" |
|
if "superhero party trends" in query.lower(): |
|
return """ |
|
Latest trends for 2025: |
|
- Luxury decorations: Gold-plated Batman statues, holographic Avengers displays. |
|
- Entertainment: Live stunt shows with Iron Man suits, VR superhero battles. |
|
- Catering: Gourmet kryptonite-green cocktails, Thor’s hammer-shaped appetizers. |
|
""" |
|
return "No relevant results found." |
|
|
|
|
|
class PartyPlannerAgent: |
|
def __init__(self, model, tokenizer): |
|
self.model = model |
|
self.tokenizer = tokenizer |
|
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
self.model.to(self.device) |
|
|
|
def generate(self, prompt: str) -> str: |
|
self.model.eval() |
|
with torch.no_grad(): |
|
inputs = self.tokenizer(prompt, return_tensors="pt", max_length=128, truncation=True).to(self.device) |
|
outputs = self.model.generate( |
|
**inputs, |
|
max_new_tokens=100, |
|
do_sample=True, |
|
top_p=0.95, |
|
temperature=0.7 |
|
) |
|
return self.tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
|
|
def plan_party(self, task: str) -> pd.DataFrame: |
|
|
|
search_result = mock_duckduckgo_search("latest superhero party trends") |
|
|
|
|
|
locations = { |
|
"Wayne Manor": (42.3601, -71.0589), |
|
"New York": (40.7128, -74.0060), |
|
"Los Angeles": (34.0522, -118.2437), |
|
"London": (51.5074, -0.1278) |
|
} |
|
|
|
|
|
wayne_coords = locations["Wayne Manor"] |
|
travel_times = { |
|
loc: calculate_cargo_travel_time(coords, wayne_coords) |
|
for loc, coords in locations.items() if loc != "Wayne Manor" |
|
} |
|
|
|
|
|
prompt = f""" |
|
Given this context from a search: "{search_result}" |
|
Plan a luxury superhero-themed party at Wayne Manor. Suggest luxury decorations, entertainment, and catering ideas. |
|
""" |
|
plan_text = self.generate(prompt) |
|
|
|
|
|
catchphrases = [ |
|
"To the Batmobile!", |
|
"Avengers, assemble!", |
|
"I am Iron Man!", |
|
"By the power of Grayskull!" |
|
] |
|
|
|
data = [ |
|
{"Location": "New York", "Travel Time (hrs)": travel_times["New York"], "Luxury Idea": "Gold-plated Batman statues", "Catchphrase": random.choice(catchphrases)}, |
|
{"Location": "Los Angeles", "Travel Time (hrs)": travel_times["Los Angeles"], "Luxury Idea": "Holographic Avengers displays", "Catchphrase": random.choice(catchphrases)}, |
|
{"Location": "London", "Travel Time (hrs)": travel_times["London"], "Luxury Idea": "Live stunt shows with Iron Man suits", "Catchphrase": random.choice(catchphrases)}, |
|
{"Location": "Wayne Manor", "Travel Time (hrs)": 0.0, "Luxury Idea": "VR superhero battles", "Catchphrase": random.choice(catchphrases)}, |
|
{"Location": "New York", "Travel Time (hrs)": travel_times["New York"], "Luxury Idea": "Gourmet kryptonite-green cocktails", "Catchphrase": random.choice(catchphrases)}, |
|
{"Location": "Los Angeles", "Travel Time (hrs)": travel_times["Los Angeles"], "Luxury Idea": "Thor’s hammer-shaped appetizers", "Catchphrase": random.choice(catchphrases)}, |
|
] |
|
|
|
return pd.DataFrame(data) |
|
|
|
|
|
st.title("SFT Tiny Titans 🚀 (Small but Mighty!)") |
|
|
|
|
|
st.sidebar.header("Galleries & Shenanigans 🎨") |
|
st.sidebar.subheader("Image Gallery 📸") |
|
img_files = get_gallery_files(["png", "jpg", "jpeg"]) |
|
if img_files: |
|
img_cols = st.sidebar.slider("Image Columns 📸", 1, 5, 3) |
|
cols = st.sidebar.columns(img_cols) |
|
for idx, img_file in enumerate(img_files[:img_cols * 2]): |
|
with cols[idx % img_cols]: |
|
st.image(Image.open(img_file), caption=f"{img_file} 🖼", use_column_width=True) |
|
|
|
st.sidebar.subheader("CSV Gallery 📊") |
|
csv_files = get_gallery_files(["csv"]) |
|
if csv_files: |
|
for csv_file in csv_files[:5]: |
|
st.sidebar.markdown(get_download_link(csv_file, "text/csv", f"{csv_file} 📊"), unsafe_allow_html=True) |
|
|
|
st.sidebar.subheader("Model Management 🗂️") |
|
model_dirs = get_model_files() |
|
selected_model = st.sidebar.selectbox("Select Saved Model", ["None"] + model_dirs) |
|
if selected_model != "None" and st.sidebar.button("Load Model 📂"): |
|
if 'builder' not in st.session_state: |
|
st.session_state['builder'] = ModelBuilder() |
|
config = ModelConfig(name=os.path.basename(selected_model), base_model="unknown", size="small", domain="general") |
|
st.session_state['builder'].load_model(selected_model, config) |
|
st.session_state['model_loaded'] = True |
|
st.rerun() |
|
|
|
|
|
tab1, tab2, tab3, tab4 = st.tabs(["Build Tiny Titan 🌱", "Fine-Tune Titan 🔧", "Test Titan 🧪", "Agentic RAG Party 🌐"]) |
|
|
|
with tab1: |
|
st.header("Build Tiny Titan 🌱 (Assemble Your Mini-Mecha!)") |
|
base_model = st.selectbox( |
|
"Select Tiny Model", |
|
["HuggingFaceTB/SmolLM-135M", "HuggingFaceTB/SmolLM-360M", "Qwen/Qwen1.5-0.5B-Chat"], |
|
help="Pick a pint-sized powerhouse (<1 GB)! SmolLM-135M (~270 MB), SmolLM-360M (~720 MB), Qwen1.5-0.5B (~1 GB)" |
|
) |
|
model_name = st.text_input("Model Name", f"tiny-titan-{int(time.time())}") |
|
domain = st.text_input("Target Domain", "general") |
|
|
|
if st.button("Download Model ⬇️"): |
|
config = ModelConfig(name=model_name, base_model=base_model, size="small", domain=domain) |
|
builder = ModelBuilder() |
|
builder.load_model(base_model, config) |
|
builder.save_model(config.model_path) |
|
st.session_state['builder'] = builder |
|
st.session_state['model_loaded'] = True |
|
st.success(f"Model downloaded and saved to {config.model_path}! 🎉 (Tiny but feisty!)") |
|
st.rerun() |
|
|
|
with tab2: |
|
st.header("Fine-Tune Titan 🔧 (Teach Your Titan Some Tricks!)") |
|
if 'builder' not in st.session_state or not st.session_state.get('model_loaded', False): |
|
st.warning("Please build or load a Titan first! ⚠️ (No Titan, no party!)") |
|
else: |
|
if st.button("Generate Sample CSV 📝"): |
|
sample_data = [ |
|
{"prompt": "What is AI?", "response": "AI is artificial intelligence, simulating human smarts in machines."}, |
|
{"prompt": "Explain machine learning", "response": "Machine learning is AI’s gym where models bulk up on data."}, |
|
{"prompt": "What is a neural network?", "response": "A neural network is a brainy AI mimicking human noggins."}, |
|
] |
|
csv_path = f"sft_data_{int(time.time())}.csv" |
|
with open(csv_path, "w", newline="") as f: |
|
writer = csv.DictWriter(f, fieldnames=["prompt", "response"]) |
|
writer.writeheader() |
|
writer.writerows(sample_data) |
|
st.markdown(get_download_link(csv_path, "text/csv", "Download Sample CSV"), unsafe_allow_html=True) |
|
st.success(f"Sample CSV generated as {csv_path}! ✅ (Fresh from the data oven!)") |
|
|
|
uploaded_csv = st.file_uploader("Upload CSV for SFT", type="csv") |
|
if uploaded_csv and st.button("Fine-Tune with Uploaded CSV 🔄"): |
|
csv_path = f"uploaded_sft_data_{int(time.time())}.csv" |
|
with open(csv_path, "wb") as f: |
|
f.write(uploaded_csv.read()) |
|
new_model_name = f"{st.session_state['builder'].config.name}-sft-{int(time.time())}" |
|
new_config = ModelConfig( |
|
name=new_model_name, |
|
base_model=st.session_state['builder'].config.base_model, |
|
size="small", |
|
domain=st.session_state['builder'].config.domain |
|
) |
|
st.session_state['builder'].config = new_config |
|
with st.status("Fine-tuning Titan... ⏳ (Whipping it into shape!)", expanded=True) as status: |
|
st.session_state['builder'].fine_tune_sft(csv_path) |
|
st.session_state['builder'].save_model(new_config.model_path) |
|
status.update(label="Fine-tuning completed! 🎉 (Titan’s ready to rumble!)", state="complete") |
|
|
|
zip_path = f"{new_config.model_path}.zip" |
|
zip_directory(new_config.model_path, zip_path) |
|
st.markdown(get_download_link(zip_path, "application/zip", "Download Fine-Tuned Titan"), unsafe_allow_html=True) |
|
st.rerun() |
|
|
|
with tab3: |
|
st.header("Test Titan 🧪 (Put Your Titan to the Test!)") |
|
if 'builder' not in st.session_state or not st.session_state.get('model_loaded', False): |
|
st.warning("Please build or load a Titan first! ⚠️ (No Titan, no test drive!)") |
|
else: |
|
if st.session_state['builder'].sft_data: |
|
st.write("Testing with SFT Data:") |
|
with st.spinner("Running SFT data tests... ⏳ (Titan’s flexing its brain muscles!)"): |
|
for item in st.session_state['builder'].sft_data[:3]: |
|
prompt = item["prompt"] |
|
expected = item["response"] |
|
status_container = st.empty() |
|
generated = st.session_state['builder'].evaluate(prompt, status_container) |
|
st.write(f"**Prompt**: {prompt}") |
|
st.write(f"**Expected**: {expected}") |
|
st.write(f"**Generated**: {generated} (Titan says: '{random.choice(['Bleep bloop!', 'I am groot!', '42!'])}')") |
|
st.write("---") |
|
status_container.empty() |
|
|
|
test_prompt = st.text_area("Enter Test Prompt", "What is AI?") |
|
if st.button("Run Test ▶️"): |
|
with st.spinner("Testing your prompt... ⏳ (Titan’s pondering deeply!)"): |
|
status_container = st.empty() |
|
result = st.session_state['builder'].evaluate(test_prompt, status_container) |
|
st.write(f"**Generated Response**: {result} (Titan’s wisdom unleashed!)") |
|
status_container.empty() |
|
|
|
if st.button("Export Titan Files 📦"): |
|
config = st.session_state['builder'].config |
|
app_code = f""" |
|
import streamlit as st |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
model = AutoModelForCausalLM.from_pretrained("{config.model_path}") |
|
tokenizer = AutoTokenizer.from_pretrained("{config.model_path}") |
|
|
|
st.title("Tiny Titan Demo") |
|
input_text = st.text_area("Enter prompt") |
|
if st.button("Generate"): |
|
inputs = tokenizer(input_text, return_tensors="pt") |
|
outputs = model.generate(**inputs, max_new_tokens=50, do_sample=True, top_p=0.95, temperature=0.7) |
|
st.write(tokenizer.decode(outputs[0], skip_special_tokens=True)) |
|
""" |
|
with open("titan_app.py", "w") as f: |
|
f.write(app_code) |
|
reqs = "streamlit\ntorch\ntransformers\n" |
|
with open("titan_requirements.txt", "w") as f: |
|
f.write(reqs) |
|
readme = f""" |
|
# Tiny Titan Demo |
|
|
|
## How to run |
|
1. Install requirements: `pip install -r titan_requirements.txt` |
|
2. Run the app: `streamlit run titan_app.py` |
|
3. Input a prompt and click "Generate". Watch the magic unfold! 🪄 |
|
""" |
|
with open("titan_README.md", "w") as f: |
|
f.write(readme) |
|
|
|
st.markdown(get_download_link("titan_app.py", "text/plain", "Download App"), unsafe_allow_html=True) |
|
st.markdown(get_download_link("titan_requirements.txt", "text/plain", "Download Requirements"), unsafe_allow_html=True) |
|
st.markdown(get_download_link("titan_README.md", "text/markdown", "Download README"), unsafe_allow_html=True) |
|
st.success("Titan files exported! ✅ (Ready to conquer the galaxy!)") |
|
|
|
with tab4: |
|
st.header("Agentic RAG Party 🌐 (Party Like It’s 2099!)") |
|
st.write("This demo uses your SFT-tuned Tiny Titan to plan a superhero party with mock retrieval!") |
|
|
|
if 'builder' not in st.session_state or not st.session_state.get('model_loaded', False): |
|
st.warning("Please build or load a Titan first! ⚠️ (No Titan, no party!)") |
|
else: |
|
if st.button("Run Agentic RAG Demo 🎉"): |
|
with st.spinner("Loading your SFT-tuned Titan... ⏳ (Titan’s suiting up!)"): |
|
agent = PartyPlannerAgent( |
|
model=st.session_state['builder'].model, |
|
tokenizer=st.session_state['builder'].tokenizer |
|
) |
|
st.write("Agent ready! 🦸♂️ (Time to plan an epic bash!)") |
|
|
|
task = """ |
|
Plan a luxury superhero-themed party at Wayne Manor (42.3601° N, 71.0589° W). |
|
Use mock search results for the latest superhero party trends, refine for luxury elements |
|
(decorations, entertainment, catering), and calculate cargo travel times from key locations |
|
(New York: 40.7128° N, 74.0060° W; LA: 34.0522° N, 118.2437° W; London: 51.5074° N, 0.1278° W) |
|
to Wayne Manor. Create a plan with at least 6 entries in a pandas dataframe. |
|
""" |
|
with st.spinner("Planning the ultimate superhero bash... ⏳ (Calling all caped crusaders!)"): |
|
try: |
|
plan_df = agent.plan_party(task) |
|
st.write("Agentic RAG Party Plan:") |
|
st.dataframe(plan_df) |
|
st.write("Party on, Wayne! 🦸♂️🎉") |
|
except Exception as e: |
|
st.error(f"Error planning party: {str(e)} (Even Superman has kryptonite days!)") |
|
|