Spaces:
Runtime error
Runtime error
add some uncommited code of f3f40fb
Browse files
app.py
CHANGED
|
@@ -1,5 +1,5 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
from utils import
|
| 3 |
import os
|
| 4 |
from constants import *
|
| 5 |
|
|
@@ -20,8 +20,8 @@ with open(si_css_file, "r") as f:
|
|
| 20 |
si_css = f.read()
|
| 21 |
|
| 22 |
# Initialize data loaders
|
| 23 |
-
default_loader =
|
| 24 |
-
si_loader =
|
| 25 |
|
| 26 |
with gr.Blocks() as block:
|
| 27 |
# Add a style element that we'll update
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
from utils import MEGABenchEvalDataLoader
|
| 3 |
import os
|
| 4 |
from constants import *
|
| 5 |
|
|
|
|
| 20 |
si_css = f.read()
|
| 21 |
|
| 22 |
# Initialize data loaders
|
| 23 |
+
default_loader = MEGABenchEvalDataLoader("./static/eval_results/Default")
|
| 24 |
+
si_loader = MEGABenchEvalDataLoader("./static/eval_results/SI")
|
| 25 |
|
| 26 |
with gr.Blocks() as block:
|
| 27 |
# Add a style element that we'll update
|
utils.py
CHANGED
|
@@ -10,29 +10,48 @@ from constants import (
|
|
| 10 |
BASE_MODEL_GROUPS
|
| 11 |
)
|
| 12 |
|
| 13 |
-
class
|
| 14 |
-
def __init__(self):
|
| 15 |
-
self.
|
| 16 |
-
|
|
|
|
| 17 |
self.SUPER_GROUPS = self._initialize_super_groups()
|
| 18 |
self.MODEL_GROUPS = self._initialize_model_groups()
|
| 19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
def _initialize_super_groups(self):
|
| 21 |
# Get a sample model to access the structure
|
| 22 |
-
sample_model = next(iter(self.
|
| 23 |
|
| 24 |
# Create groups with task counts
|
| 25 |
groups = {}
|
| 26 |
self.keyword_display_map = {} # Add this map to store display-to-original mapping
|
| 27 |
|
| 28 |
-
for dim in self.
|
| 29 |
dim_name = DIMENSION_NAME_MAP[dim]
|
| 30 |
# Create a list of tuples (display_name, count, keyword) for sorting
|
| 31 |
keyword_info = []
|
| 32 |
|
| 33 |
-
for keyword in self.
|
| 34 |
# Get the task count for this keyword
|
| 35 |
-
task_count = self.
|
| 36 |
original_name = KEYWORD_NAME_MAP.get(keyword, keyword)
|
| 37 |
display_name = f"{original_name}({task_count})"
|
| 38 |
keyword_info.append((display_name, task_count, keyword))
|
|
@@ -50,7 +69,7 @@ class BaseDataLoader:
|
|
| 50 |
return {k: groups[k] for k in order if k in groups}
|
| 51 |
|
| 52 |
def _initialize_model_groups(self) -> Dict[str, list]:
|
| 53 |
-
available_models = set(self.
|
| 54 |
|
| 55 |
filtered_groups = {}
|
| 56 |
for group_name, models in BASE_MODEL_GROUPS.items():
|
|
@@ -63,21 +82,15 @@ class BaseDataLoader:
|
|
| 63 |
|
| 64 |
return filtered_groups
|
| 65 |
|
| 66 |
-
def _load_model_data(self) -> Dict[str, Any]:
|
| 67 |
-
raise NotImplementedError("Subclasses must implement _load_model_data")
|
| 68 |
-
|
| 69 |
-
def _load_summary_data(self) -> Dict[str, Any]:
|
| 70 |
-
raise NotImplementedError("Subclasses must implement _load_summary_data")
|
| 71 |
-
|
| 72 |
def get_df(self, selected_super_group: str, selected_model_group: str) -> pd.DataFrame:
|
| 73 |
original_dimension = get_original_dimension(selected_super_group)
|
| 74 |
data = []
|
| 75 |
|
| 76 |
for model in self.MODEL_GROUPS[selected_model_group]:
|
| 77 |
-
if model not in self.
|
| 78 |
continue
|
| 79 |
|
| 80 |
-
model_data = self.
|
| 81 |
summary = self.SUMMARY_DATA[model]
|
| 82 |
|
| 83 |
# Basic model information
|
|
@@ -110,11 +123,11 @@ class BaseDataLoader:
|
|
| 110 |
df = self.get_df(selected_super_group, selected_model_group)
|
| 111 |
|
| 112 |
# Get total task counts from the first model's data
|
| 113 |
-
sample_model =
|
| 114 |
total_core_tasks = self.SUMMARY_DATA[sample_model]["core"]["num_eval_tasks"]
|
| 115 |
total_open_tasks = self.SUMMARY_DATA[sample_model]["open"]["num_eval_tasks"]
|
| 116 |
total_tasks = total_core_tasks + total_open_tasks
|
| 117 |
-
|
| 118 |
# Define headers with task counts
|
| 119 |
column_headers = {
|
| 120 |
"Models": "Models",
|
|
@@ -143,84 +156,6 @@ class BaseDataLoader:
|
|
| 143 |
return headers, data
|
| 144 |
|
| 145 |
|
| 146 |
-
class DefaultDataLoader(BaseDataLoader):
|
| 147 |
-
def __init__(self):
|
| 148 |
-
super().__init__()
|
| 149 |
-
|
| 150 |
-
def _load_model_data(self) -> Dict[str, Any]:
|
| 151 |
-
model_data = {}
|
| 152 |
-
base_path = "./static/eval_results/Default"
|
| 153 |
-
|
| 154 |
-
try:
|
| 155 |
-
model_folders = [f for f in os.listdir(base_path) if os.path.isdir(os.path.join(base_path, f))]
|
| 156 |
-
for model_name in model_folders:
|
| 157 |
-
model_path = f"{base_path}/{model_name}/summary_results.json"
|
| 158 |
-
with open(model_path, "r") as f:
|
| 159 |
-
data = json.load(f)
|
| 160 |
-
if "keyword_stats" in data:
|
| 161 |
-
model_data[model_name] = data["keyword_stats"]
|
| 162 |
-
except FileNotFoundError:
|
| 163 |
-
pass
|
| 164 |
-
|
| 165 |
-
return model_data
|
| 166 |
-
|
| 167 |
-
def _load_summary_data(self) -> Dict[str, Any]:
|
| 168 |
-
summary_data = {}
|
| 169 |
-
base_path = "./static/eval_results/Default"
|
| 170 |
-
|
| 171 |
-
try:
|
| 172 |
-
model_folders = [f for f in os.listdir(base_path) if os.path.isdir(os.path.join(base_path, f))]
|
| 173 |
-
for model_name in model_folders:
|
| 174 |
-
model_path = f"{base_path}/{model_name}/summary_results.json"
|
| 175 |
-
with open(model_path, "r") as f:
|
| 176 |
-
data = json.load(f)
|
| 177 |
-
if "model_summary" in data:
|
| 178 |
-
summary_data[model_name] = data["model_summary"]
|
| 179 |
-
except FileNotFoundError:
|
| 180 |
-
pass
|
| 181 |
-
|
| 182 |
-
return summary_data
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
class SingleImageDataLoader(BaseDataLoader):
|
| 186 |
-
def __init__(self):
|
| 187 |
-
super().__init__()
|
| 188 |
-
|
| 189 |
-
def _load_model_data(self) -> Dict[str, Any]:
|
| 190 |
-
model_data = {}
|
| 191 |
-
base_path = "./static/eval_results/SI"
|
| 192 |
-
|
| 193 |
-
try:
|
| 194 |
-
model_folders = [f for f in os.listdir(base_path) if os.path.isdir(os.path.join(base_path, f))]
|
| 195 |
-
for model_name in model_folders:
|
| 196 |
-
model_path = f"{base_path}/{model_name}/summary_results.json"
|
| 197 |
-
with open(model_path, "r") as f:
|
| 198 |
-
data = json.load(f)
|
| 199 |
-
if "keyword_stats" in data:
|
| 200 |
-
model_data[model_name] = data["keyword_stats"]
|
| 201 |
-
except FileNotFoundError:
|
| 202 |
-
pass
|
| 203 |
-
|
| 204 |
-
return model_data
|
| 205 |
-
|
| 206 |
-
def _load_summary_data(self) -> Dict[str, Any]:
|
| 207 |
-
summary_data = {}
|
| 208 |
-
base_path = "./static/eval_results/SI"
|
| 209 |
-
|
| 210 |
-
try:
|
| 211 |
-
model_folders = [f for f in os.listdir(base_path) if os.path.isdir(os.path.join(base_path, f))]
|
| 212 |
-
for model_name in model_folders:
|
| 213 |
-
model_path = f"{base_path}/{model_name}/summary_results.json"
|
| 214 |
-
with open(model_path, "r") as f:
|
| 215 |
-
data = json.load(f)
|
| 216 |
-
if "model_summary" in data:
|
| 217 |
-
summary_data[model_name] = data["model_summary"]
|
| 218 |
-
except FileNotFoundError:
|
| 219 |
-
pass
|
| 220 |
-
|
| 221 |
-
return summary_data
|
| 222 |
-
|
| 223 |
-
|
| 224 |
# Keep your helper functions
|
| 225 |
def get_original_dimension(mapped_dimension):
|
| 226 |
return next(k for k, v in DIMENSION_NAME_MAP.items() if v == mapped_dimension)
|
|
|
|
| 10 |
BASE_MODEL_GROUPS
|
| 11 |
)
|
| 12 |
|
| 13 |
+
class MEGABenchEvalDataLoader:
|
| 14 |
+
def __init__(self, base_path):
|
| 15 |
+
self.base_path = base_path
|
| 16 |
+
# Load both model and summary data at once
|
| 17 |
+
self.KEYWORD_DATA, self.SUMMARY_DATA = self._load_data()
|
| 18 |
self.SUPER_GROUPS = self._initialize_super_groups()
|
| 19 |
self.MODEL_GROUPS = self._initialize_model_groups()
|
| 20 |
|
| 21 |
+
def _get_base_path(self) -> str:
|
| 22 |
+
raise NotImplementedError("Subclasses must implement _get_base_path")
|
| 23 |
+
|
| 24 |
+
def _load_data(self) -> Tuple[Dict[str, Any], Dict[str, Any]]:
|
| 25 |
+
summary_data = {}
|
| 26 |
+
keyword_data = {}
|
| 27 |
+
model_folders = [f for f in os.listdir(self.base_path) if os.path.isdir(os.path.join(self.base_path, f))]
|
| 28 |
+
for model_name in model_folders:
|
| 29 |
+
model_path = f"{self.base_path}/{model_name}/summary_and_keyword_stats.json"
|
| 30 |
+
with open(model_path, "r") as f:
|
| 31 |
+
data = json.load(f)
|
| 32 |
+
if "keyword_stats" in data:
|
| 33 |
+
keyword_data[model_name] = data["keyword_stats"]
|
| 34 |
+
if "model_summary" in data:
|
| 35 |
+
summary_data[model_name] = data["model_summary"]
|
| 36 |
+
|
| 37 |
+
return keyword_data, summary_data
|
| 38 |
+
|
| 39 |
def _initialize_super_groups(self):
|
| 40 |
# Get a sample model to access the structure
|
| 41 |
+
sample_model = next(iter(self.KEYWORD_DATA))
|
| 42 |
|
| 43 |
# Create groups with task counts
|
| 44 |
groups = {}
|
| 45 |
self.keyword_display_map = {} # Add this map to store display-to-original mapping
|
| 46 |
|
| 47 |
+
for dim in self.KEYWORD_DATA[sample_model]:
|
| 48 |
dim_name = DIMENSION_NAME_MAP[dim]
|
| 49 |
# Create a list of tuples (display_name, count, keyword) for sorting
|
| 50 |
keyword_info = []
|
| 51 |
|
| 52 |
+
for keyword in self.KEYWORD_DATA[sample_model][dim]:
|
| 53 |
# Get the task count for this keyword
|
| 54 |
+
task_count = self.KEYWORD_DATA[sample_model][dim][keyword]["count"]
|
| 55 |
original_name = KEYWORD_NAME_MAP.get(keyword, keyword)
|
| 56 |
display_name = f"{original_name}({task_count})"
|
| 57 |
keyword_info.append((display_name, task_count, keyword))
|
|
|
|
| 69 |
return {k: groups[k] for k in order if k in groups}
|
| 70 |
|
| 71 |
def _initialize_model_groups(self) -> Dict[str, list]:
|
| 72 |
+
available_models = set(self.KEYWORD_DATA.keys())
|
| 73 |
|
| 74 |
filtered_groups = {}
|
| 75 |
for group_name, models in BASE_MODEL_GROUPS.items():
|
|
|
|
| 82 |
|
| 83 |
return filtered_groups
|
| 84 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 85 |
def get_df(self, selected_super_group: str, selected_model_group: str) -> pd.DataFrame:
|
| 86 |
original_dimension = get_original_dimension(selected_super_group)
|
| 87 |
data = []
|
| 88 |
|
| 89 |
for model in self.MODEL_GROUPS[selected_model_group]:
|
| 90 |
+
if model not in self.KEYWORD_DATA or model not in self.SUMMARY_DATA:
|
| 91 |
continue
|
| 92 |
|
| 93 |
+
model_data = self.KEYWORD_DATA[model]
|
| 94 |
summary = self.SUMMARY_DATA[model]
|
| 95 |
|
| 96 |
# Basic model information
|
|
|
|
| 123 |
df = self.get_df(selected_super_group, selected_model_group)
|
| 124 |
|
| 125 |
# Get total task counts from the first model's data
|
| 126 |
+
sample_model = "GPT_4o"
|
| 127 |
total_core_tasks = self.SUMMARY_DATA[sample_model]["core"]["num_eval_tasks"]
|
| 128 |
total_open_tasks = self.SUMMARY_DATA[sample_model]["open"]["num_eval_tasks"]
|
| 129 |
total_tasks = total_core_tasks + total_open_tasks
|
| 130 |
+
|
| 131 |
# Define headers with task counts
|
| 132 |
column_headers = {
|
| 133 |
"Models": "Models",
|
|
|
|
| 156 |
return headers, data
|
| 157 |
|
| 158 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 159 |
# Keep your helper functions
|
| 160 |
def get_original_dimension(mapped_dimension):
|
| 161 |
return next(k for k, v in DIMENSION_NAME_MAP.items() if v == mapped_dimension)
|