import gradio as gr
import torch
from diffusers import StableDiffusionXLPipeline, StableDiffusionPipeline, LCMScheduler
from diffusers.schedulers import TCDScheduler
import spaces
from PIL import Image
import os
import re
from datetime import datetime
import random
import glob

SAFETY_CHECKER = True

checkpoints = {
    "2-Step": ["pcm_{}_smallcfg_2step_converted.safetensors", 2, 0.0],
    "4-Step": ["pcm_{}_smallcfg_4step_converted.safetensors", 4, 0.0],
    "8-Step": ["pcm_{}_smallcfg_8step_converted.safetensors", 8, 0.0],
    "16-Step": ["pcm_{}_smallcfg_16step_converted.safetensors", 16, 0.0],
    "Normal CFG 4-Step": ["pcm_{}_normalcfg_4step_converted.safetensors", 4, 7.5],
    "Normal CFG 8-Step": ["pcm_{}_normalcfg_8step_converted.safetensors", 8, 7.5],
    "Normal CFG 16-Step": ["pcm_{}_normalcfg_16step_converted.safetensors", 16, 7.5],
    "LCM-Like LoRA": ["pcm_{}_lcmlike_lora_converted.safetensors", 4, 0.0],
}

loaded = None

if torch.cuda.is_available():
    pipe_sdxl = StableDiffusionXLPipeline.from_pretrained(
        "stabilityai/stable-diffusion-xl-base-1.0",
        torch_dtype=torch.float16,
        variant="fp16",
    ).to("cuda")
    pipe_sd15 = StableDiffusionPipeline.from_pretrained(
        "runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16, variant="fp16"
    ).to("cuda")

if SAFETY_CHECKER:
    from safety_checker import StableDiffusionSafetyChecker
    from transformers import CLIPFeatureExtractor

    safety_checker = StableDiffusionSafetyChecker.from_pretrained(
        "CompVis/stable-diffusion-safety-checker"
    ).to("cuda")
    feature_extractor = CLIPFeatureExtractor.from_pretrained(
        "openai/clip-vit-base-patch32"
    )

    def check_nsfw_images(images: list[Image.Image]) -> tuple[list[Image.Image], list[bool]]:
        safety_checker_input = feature_extractor(images, return_tensors="pt").to("cuda")
        has_nsfw_concepts = safety_checker(
            images=[images], clip_input=safety_checker_input.pixel_values.to("cuda")
        )
        return images, has_nsfw_concepts

def save_image(image: Image.Image, prompt: str) -> str:
    timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
    clean_prompt = re.sub(r'[^\w\-_\. ]', '_', prompt)[:50]
    filename = f"{timestamp}_{clean_prompt}.png"
    image.save(filename)
    return filename

def get_image_gallery():
    image_files = glob.glob("*.png")
    return sorted([(file, file) for file in image_files], key=lambda x: os.path.getmtime(x[0]), reverse=True)

@spaces.GPU(enable_queue=True)
def generate_image(
    prompt,
    ckpt,
    num_inference_steps,
    progress=gr.Progress(track_tqdm=True),
    mode="sdxl",
):
    global loaded
    checkpoint = checkpoints[ckpt][0].format(mode)
    guidance_scale = checkpoints[ckpt][2]
    pipe = pipe_sdxl if mode == "sdxl" else pipe_sd15

    if loaded != (ckpt + mode):
        pipe.load_lora_weights(
            "wangfuyun/PCM_Weights", weight_name=checkpoint, subfolder=mode
        )
        loaded = ckpt + mode

        if ckpt == "LCM-Like LoRA":
            pipe.scheduler = LCMScheduler()
        else:
            pipe.scheduler = TCDScheduler(
                num_train_timesteps=1000,
                beta_start=0.00085,
                beta_end=0.012,
                beta_schedule="scaled_linear",
                timestep_spacing="trailing",
            )

    results = pipe(
        prompt, num_inference_steps=num_inference_steps, guidance_scale=guidance_scale
    )

    if SAFETY_CHECKER:
        images, has_nsfw_concepts = check_nsfw_images(results.images)
        if any(has_nsfw_concepts):
            gr.Warning("NSFW content detected.")
            return Image.new("RGB", (512, 512)), get_image_gallery()
        filename = save_image(images[0], prompt)
        return images[0], get_image_gallery()
    filename = save_image(results.images[0], prompt)
    return results.images[0], get_image_gallery()

def update_steps(ckpt):
    num_inference_steps = checkpoints[ckpt][1]
    if ckpt == "LCM-Like LoRA":
        return gr.update(interactive=True, value=num_inference_steps)
    return gr.update(interactive=False, value=num_inference_steps)

css = """
.gradio-container {
  max-width: 60rem !important;
}
"""

art_styles = ['Impressionist', 'Cubist', 'Surrealist', 'Abstract Expressionist', 'Pop Art', 'Minimalist', 'Baroque', 'Art Nouveau', 'Pointillist', 'Fauvism']

examples = [
    [f"{random.choice(art_styles)} painting of a majestic lighthouse on a rocky coast. Use bold brushstrokes and a vibrant color palette to capture the interplay of light and shadow as the lighthouse beam cuts through a stormy night sky.", "4-Step", 4],
    [f"{random.choice(art_styles)} still life featuring a pair of vintage eyeglasses. Focus on the intricate details of the frames and lenses, using a warm color scheme to evoke a sense of nostalgia and wisdom.", "4-Step", 4],
    [f"{random.choice(art_styles)} depiction of a rustic wooden stool in a sunlit artist's studio. Emphasize the texture of the wood and the interplay of light and shadow, using a mix of earthy tones and highlights.", "4-Step", 4],
    [f"{random.choice(art_styles)} scene viewed through an ornate window frame. Contrast the intricate details of the window with a dreamy, soft-focus landscape beyond, using a palette that transitions from cool interior tones to warm exterior hues.", "4-Step", 4],
    [f"{random.choice(art_styles)} close-up study of interlaced fingers. Use a monochromatic color scheme to emphasize the form and texture of the hands, with dramatic lighting to create depth and emotion.", "4-Step", 4],
    [f"{random.choice(art_styles)} composition featuring a set of dice in motion. Capture the energy and randomness of the throw, using a dynamic color palette and blurred lines to convey movement.", "4-Step", 4],
    [f"{random.choice(art_styles)} interpretation of heaven. Create an ethereal atmosphere with soft, billowing clouds and radiant light, using a palette of celestial blues, golds, and whites.", "4-Step", 4],
    [f"{random.choice(art_styles)} portrayal of an ancient, mystical gate. Combine architectural details with elements of fantasy, using a rich, jewel-toned palette to create an air of mystery and magic.", "4-Step", 4],
    [f"{random.choice(art_styles)} portrait of a curious cat. Focus on capturing the feline's expressive eyes and sleek form, using a mix of bold and subtle colors to bring out the cat's personality.", "4-Step", 4],
    [f"{random.choice(art_styles)} abstract representation of toes in sand. Use textured brushstrokes to convey the feeling of warm sand, with a palette inspired by a sun-drenched beach.", "4-Step", 4]
]

with gr.Blocks(css=css) as demo:
    gr.Markdown(
        """
# Phased Consistency Model  

Phased Consistency Model (PCM) is an image generation technique that addresses the limitations of the Latent Consistency Model (LCM) in high-resolution and text-conditioned image generation.
PCM outperforms LCM across various generation settings and achieves state-of-the-art results in both image and video generation.

[[paper](https://huggingface.co/papers/2405.18407)] [[arXiv](https://arxiv.org/abs/2405.18407)]  [[code](https://github.com/G-U-N/Phased-Consistency-Model)] [[project page](https://g-u-n.github.io/projects/pcm)]
"""
    )
    with gr.Group():
        with gr.Row():
            prompt = gr.Textbox(label="Prompt", scale=8)
            ckpt = gr.Dropdown(
                label="Select inference steps",
                choices=list(checkpoints.keys()),
                value="4-Step",
            )
            steps = gr.Slider(
                label="Number of Inference Steps",
                minimum=1,
                maximum=20,
                step=1,
                value=4,
                interactive=False,
            )
            ckpt.change(
                fn=update_steps,
                inputs=[ckpt],
                outputs=[steps],
                queue=False,
                show_progress=False,
            )

            submit_sdxl = gr.Button("Run on SDXL", scale=1)
            submit_sd15 = gr.Button("Run on SD15", scale=1)

    img = gr.Image(label="PCM Image")
    gallery = gr.Gallery(label="Generated Images", show_label=True, columns=4, height="auto")
    gr.Examples(
        examples=examples,
        inputs=[prompt, ckpt, steps],
        outputs=[img, gallery],
        fn=generate_image,
        cache_examples=True,
    )

    gr.on(
        fn=generate_image,
        triggers=[ckpt.change, prompt.submit, submit_sdxl.click],
        inputs=[prompt, ckpt, steps],
        outputs=[img, gallery],
    )
    gr.on(
        fn=lambda *args: generate_image(*args, mode="sd15"),
        triggers=[submit_sd15.click],
        inputs=[prompt, ckpt, steps],
        outputs=[img, gallery],
    )

    demo.load(fn=get_image_gallery, outputs=gallery)

demo.queue(api_open=False).launch(show_api=False)