|  | import streamlit as st | 
					
						
						|  | import openai | 
					
						
						|  | import os | 
					
						
						|  | import base64 | 
					
						
						|  | import cv2 | 
					
						
						|  | from moviepy.editor import VideoFileClip | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | openai.api_key = os.getenv('OPENAI_API_KEY') | 
					
						
						|  | openai.organization = os.getenv('OPENAI_ORG_ID') | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | MODEL = "gpt-4o" | 
					
						
						|  |  | 
					
						
						|  | def process_text(): | 
					
						
						|  | text_input = st.text_input("Enter your text:") | 
					
						
						|  | if text_input: | 
					
						
						|  | completion = openai.ChatCompletion.create( | 
					
						
						|  | model=MODEL, | 
					
						
						|  | messages=[ | 
					
						
						|  | {"role": "system", "content": "You are a helpful assistant. Help me with my math homework!"}, | 
					
						
						|  | {"role": "user", "content": f"Hello! Could you solve {text_input}?"} | 
					
						
						|  | ] | 
					
						
						|  | ) | 
					
						
						|  | st.write("Assistant: " + completion.choices[0].message.content) | 
					
						
						|  |  | 
					
						
						|  | def process_image(image_input): | 
					
						
						|  | if image_input: | 
					
						
						|  | base64_image = base64.b64encode(image_input.read()).decode("utf-8") | 
					
						
						|  | response = openai.ChatCompletion.create( | 
					
						
						|  | model=MODEL, | 
					
						
						|  | messages=[ | 
					
						
						|  | {"role": "system", "content": "You are a helpful assistant that responds in Markdown. Help me with my math homework!"}, | 
					
						
						|  | {"role": "user", "content": [ | 
					
						
						|  | {"type": "text", "text": "What's the area of the triangle?"}, | 
					
						
						|  | {"type": "image_url", "image_url": { | 
					
						
						|  | "url": f"data:image/png;base64,{base64_image}"} | 
					
						
						|  | } | 
					
						
						|  | ]} | 
					
						
						|  | ], | 
					
						
						|  | temperature=0.0, | 
					
						
						|  | ) | 
					
						
						|  | st.markdown(response.choices[0].message.content) | 
					
						
						|  |  | 
					
						
						|  | def process_audio(audio_input): | 
					
						
						|  | if audio_input: | 
					
						
						|  | transcription = openai.Audio.transcriptions.create( | 
					
						
						|  | model="whisper-1", | 
					
						
						|  | file=audio_input, | 
					
						
						|  | ) | 
					
						
						|  | response = openai.ChatCompletion.create( | 
					
						
						|  | model=MODEL, | 
					
						
						|  | messages=[ | 
					
						
						|  | {"role": "system", "content": "You are generating a transcript summary. Create a summary of the provided transcription. Respond in Markdown."}, | 
					
						
						|  | {"role": "user", "content": [ | 
					
						
						|  | {"type": "text", "text": f"The audio transcription is: {transcription.text}"} | 
					
						
						|  | ]}, | 
					
						
						|  | ], | 
					
						
						|  | temperature=0, | 
					
						
						|  | ) | 
					
						
						|  | st.markdown(response.choices[0].message.content) | 
					
						
						|  |  | 
					
						
						|  | def process_video(video_input): | 
					
						
						|  | if video_input: | 
					
						
						|  | base64Frames, audio_path = process_video_frames(video_input) | 
					
						
						|  | transcription = openai.Audio.transcriptions.create( | 
					
						
						|  | model="whisper-1", | 
					
						
						|  | file=open(audio_path, "rb"), | 
					
						
						|  | ) | 
					
						
						|  | response = openai.ChatCompletion.create( | 
					
						
						|  | model=MODEL, | 
					
						
						|  | messages=[ | 
					
						
						|  | {"role": "system", "content": "You are generating a video summary. Create a summary of the provided video and its transcript. Respond in Markdown"}, | 
					
						
						|  | {"role": "user", "content": [ | 
					
						
						|  | "These are the frames from the video.", | 
					
						
						|  | *map(lambda x: {"type": "image_url", | 
					
						
						|  | "image_url": {"url": f'data:image/jpg;base64,{x}', "detail": "low"}}, base64Frames), | 
					
						
						|  | {"type": "text", "text": f"The audio transcription is: {transcription.text}"} | 
					
						
						|  | ]}, | 
					
						
						|  | ], | 
					
						
						|  | temperature=0, | 
					
						
						|  | ) | 
					
						
						|  | st.markdown(response.choices[0].message.content) | 
					
						
						|  |  | 
					
						
						|  | def process_video_frames(video_path, seconds_per_frame=2): | 
					
						
						|  | base64Frames = [] | 
					
						
						|  | base_video_path, _ = os.path.splitext(video_path.name) | 
					
						
						|  | video = cv2.VideoCapture(video_path.name) | 
					
						
						|  | total_frames = int(video.get(cv2.CAP_PROP_FRAME_COUNT)) | 
					
						
						|  | fps = video.get(cv2.CAP_PROP_FPS) | 
					
						
						|  | frames_to_skip = int(fps * seconds_per_frame) | 
					
						
						|  | curr_frame = 0 | 
					
						
						|  | while curr_frame < total_frames - 1: | 
					
						
						|  | video.set(cv2.CAP_PROP_POS_FRAMES, curr_frame) | 
					
						
						|  | success, frame = video.read() | 
					
						
						|  | if not success: | 
					
						
						|  | break | 
					
						
						|  | _, buffer = cv2.imencode(".jpg", frame) | 
					
						
						|  | base64Frames.append(base64.b64encode(buffer).decode("utf-8")) | 
					
						
						|  | curr_frame += frames_to_skip | 
					
						
						|  | video.release() | 
					
						
						|  | audio_path = f"{base_video_path}.mp3" | 
					
						
						|  | clip = VideoFileClip(video_path.name) | 
					
						
						|  | clip.audio.write_audiofile(audio_path, bitrate="32k") | 
					
						
						|  | clip.audio.close() | 
					
						
						|  | clip.close() | 
					
						
						|  | return base64Frames, audio_path | 
					
						
						|  |  | 
					
						
						|  | def main(): | 
					
						
						|  | st.title("Omni Demo") | 
					
						
						|  | option = st.selectbox("Select an option", ("Text", "Image", "Audio", "Video")) | 
					
						
						|  | if option == "Text": | 
					
						
						|  | process_text() | 
					
						
						|  | elif option == "Image": | 
					
						
						|  | image_input = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"]) | 
					
						
						|  | process_image(image_input) | 
					
						
						|  | elif option == "Audio": | 
					
						
						|  | audio_input = st.file_uploader("Upload an audio file", type=["mp3", "wav"]) | 
					
						
						|  | process_audio(audio_input) | 
					
						
						|  | elif option == "Video": | 
					
						
						|  | video_input = st.file_uploader("Upload a video file", type=["mp4"]) | 
					
						
						|  | process_video(video_input) | 
					
						
						|  |  | 
					
						
						|  | if __name__ == "__main__": | 
					
						
						|  | main() | 
					
						
						|  |  |