Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -42,29 +42,36 @@ transhuman_glossary = {
|
|
| 42 |
"Cybernetics": ["Robotic Limbs", "Augmented Eyes"],
|
| 43 |
}
|
| 44 |
|
|
|
|
| 45 |
def process_text(text):
|
| 46 |
"""🕵️ process_text: detective style—prints lines to Streamlit for debugging."""
|
| 47 |
st.write(f"process_text called with: {text}")
|
| 48 |
|
|
|
|
| 49 |
def search_arxiv(text):
|
| 50 |
"""🔭 search_arxiv: pretend to search ArXiv, just prints debug for now."""
|
| 51 |
st.write(f"search_arxiv called with: {text}")
|
| 52 |
|
|
|
|
| 53 |
def SpeechSynthesis(text):
|
| 54 |
"""🗣 SpeechSynthesis: read lines out loud? Here, we log them for demonstration."""
|
| 55 |
st.write(f"SpeechSynthesis called with: {text}")
|
| 56 |
|
|
|
|
| 57 |
def process_image(image_file, prompt):
|
| 58 |
"""📷 process_image: imagine an AI pipeline for images, here we just log."""
|
| 59 |
return f"[process_image placeholder] {image_file} => {prompt}"
|
| 60 |
|
|
|
|
| 61 |
def process_video(video_file, seconds_per_frame):
|
| 62 |
"""🎞 process_video: placeholder for video tasks, logs to Streamlit."""
|
| 63 |
st.write(f"[process_video placeholder] {video_file}, {seconds_per_frame} sec/frame")
|
| 64 |
|
|
|
|
| 65 |
API_URL = "https://huggingface-inference-endpoint-placeholder"
|
| 66 |
API_KEY = "hf_XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX"
|
| 67 |
|
|
|
|
| 68 |
@st.cache_resource
|
| 69 |
def InferenceLLM(prompt):
|
| 70 |
"""🔮 InferenceLLM: a stub returning a mock response for 'prompt'."""
|
|
@@ -77,7 +84,7 @@ def InferenceLLM(prompt):
|
|
| 77 |
@st.cache_resource
|
| 78 |
def display_glossary_entity(k):
|
| 79 |
"""
|
| 80 |
-
Creates multiple link emojis for a single entity.
|
| 81 |
Each link might point to /?q=..., /?q=<prefix>..., or external sites.
|
| 82 |
"""
|
| 83 |
search_urls = {
|
|
@@ -94,6 +101,7 @@ def display_glossary_entity(k):
|
|
| 94 |
links_md = ' '.join([f"[{emoji}]({url(k)})" for emoji, url in search_urls.items()])
|
| 95 |
st.markdown(f"**{k}** <small>{links_md}</small>", unsafe_allow_html=True)
|
| 96 |
|
|
|
|
| 97 |
def display_content_or_image(query):
|
| 98 |
"""
|
| 99 |
If 'query' is in transhuman_glossary or there's an image matching 'images/<query>.png',
|
|
@@ -112,6 +120,7 @@ def display_content_or_image(query):
|
|
| 112 |
st.warning("No matching content or image found.")
|
| 113 |
return False
|
| 114 |
|
|
|
|
| 115 |
def clear_query_params():
|
| 116 |
"""For fully clearing, you'd do a redirect or st.experimental_set_query_params()."""
|
| 117 |
st.warning("Define a redirect or link without query params if you want to truly clear them.")
|
|
@@ -128,6 +137,7 @@ def load_file(file_path):
|
|
| 128 |
except:
|
| 129 |
return ""
|
| 130 |
|
|
|
|
| 131 |
@st.cache_resource
|
| 132 |
def create_zip_of_files(files):
|
| 133 |
"""Combine multiple local files into a single .zip for user to download."""
|
|
@@ -137,6 +147,7 @@ def create_zip_of_files(files):
|
|
| 137 |
zipf.write(file)
|
| 138 |
return zip_name
|
| 139 |
|
|
|
|
| 140 |
@st.cache_resource
|
| 141 |
def get_zip_download_link(zip_file):
|
| 142 |
"""Return an <a> link to download the given zip_file (base64-encoded)."""
|
|
@@ -145,6 +156,7 @@ def get_zip_download_link(zip_file):
|
|
| 145 |
b64 = base64.b64encode(data).decode()
|
| 146 |
return f'<a href="data:application/zip;base64,{b64}" download="{zip_file}">Download All</a>'
|
| 147 |
|
|
|
|
| 148 |
def get_table_download_link(file_path):
|
| 149 |
"""
|
| 150 |
Creates a download link for a single file from your snippet.
|
|
@@ -170,10 +182,12 @@ def get_table_download_link(file_path):
|
|
| 170 |
except:
|
| 171 |
return ''
|
| 172 |
|
|
|
|
| 173 |
def get_file_size(file_path):
|
| 174 |
"""Get file size in bytes."""
|
| 175 |
return os.path.getsize(file_path)
|
| 176 |
|
|
|
|
| 177 |
def FileSidebar():
|
| 178 |
"""
|
| 179 |
Renders .md files in the sidebar with open/view/run/delete logic.
|
|
@@ -181,6 +195,7 @@ def FileSidebar():
|
|
| 181 |
all_files = glob.glob("*.md")
|
| 182 |
# If you want to filter out short-named or special files:
|
| 183 |
all_files = [f for f in all_files if len(os.path.splitext(f)[0]) >= 5]
|
|
|
|
| 184 |
all_files.sort(key=lambda x: (os.path.splitext(x)[1], x), reverse=True)
|
| 185 |
|
| 186 |
# Buttons for "Delete All" and "Download"
|
|
@@ -201,9 +216,9 @@ def FileSidebar():
|
|
| 201 |
|
| 202 |
# Each file row
|
| 203 |
for file in all_files:
|
| 204 |
-
col1, col2, col3, col4, col5 = st.sidebar.columns([1,6,1,1,1])
|
| 205 |
with col1:
|
| 206 |
-
if st.button("🌐", key="md_"+file):
|
| 207 |
file_contents = load_file(file)
|
| 208 |
file_name = file
|
| 209 |
next_action = 'md'
|
|
@@ -211,7 +226,7 @@ def FileSidebar():
|
|
| 211 |
with col2:
|
| 212 |
st.markdown(get_table_download_link(file), unsafe_allow_html=True)
|
| 213 |
with col3:
|
| 214 |
-
if st.button("📂", key="open_"+file):
|
| 215 |
file_contents = load_file(file)
|
| 216 |
file_name = file
|
| 217 |
next_action = 'open'
|
|
@@ -220,13 +235,13 @@ def FileSidebar():
|
|
| 220 |
st.session_state['filetext'] = file_contents
|
| 221 |
st.session_state['next_action'] = next_action
|
| 222 |
with col4:
|
| 223 |
-
if st.button("▶️", key="read_"+file):
|
| 224 |
file_contents = load_file(file)
|
| 225 |
file_name = file
|
| 226 |
next_action = 'search'
|
| 227 |
st.session_state['next_action'] = next_action
|
| 228 |
with col5:
|
| 229 |
-
if st.button("🗑", key="delete_"+file):
|
| 230 |
os.remove(file)
|
| 231 |
st.rerun()
|
| 232 |
|
|
@@ -255,15 +270,18 @@ def FileSidebar():
|
|
| 255 |
if st.button("🔍Run"):
|
| 256 |
st.write("Running GPT logic placeholder...")
|
| 257 |
|
|
|
|
| 258 |
# =====================================================================================
|
| 259 |
# 4) SCORING / GLOSSARIES
|
| 260 |
# =====================================================================================
|
| 261 |
score_dir = "scores"
|
| 262 |
os.makedirs(score_dir, exist_ok=True)
|
| 263 |
|
|
|
|
| 264 |
def generate_key(label, header, idx):
|
| 265 |
return f"{header}_{label}_{idx}_key"
|
| 266 |
|
|
|
|
| 267 |
def update_score(key, increment=1):
|
| 268 |
"""Increment the 'score' for a glossary item in JSON storage."""
|
| 269 |
score_file = os.path.join(score_dir, f"{key}.json")
|
|
@@ -278,6 +296,7 @@ def update_score(key, increment=1):
|
|
| 278 |
json.dump(score_data, file)
|
| 279 |
return score_data["score"]
|
| 280 |
|
|
|
|
| 281 |
def load_score(key):
|
| 282 |
"""Load the stored score from .json if it exists, else 0."""
|
| 283 |
file_path = os.path.join(score_dir, f"{key}.json")
|
|
@@ -287,6 +306,7 @@ def load_score(key):
|
|
| 287 |
return score_data["score"]
|
| 288 |
return 0
|
| 289 |
|
|
|
|
| 290 |
def display_buttons_with_scores(num_columns_text):
|
| 291 |
"""
|
| 292 |
Show glossary items as clickable buttons, each increments a 'score'.
|
|
@@ -325,6 +345,7 @@ def display_buttons_with_scores(num_columns_text):
|
|
| 325 |
newscore = update_score(key.replace('?', ''))
|
| 326 |
st.markdown(f"Scored **{category} - {game} - {term}** -> {newscore}")
|
| 327 |
|
|
|
|
| 328 |
# =====================================================================================
|
| 329 |
# 5) IMAGES & VIDEOS
|
| 330 |
# =====================================================================================
|
|
@@ -354,6 +375,7 @@ def display_images_and_wikipedia_summaries(num_columns=4):
|
|
| 354 |
st.write(f"Could not open {image_file}")
|
| 355 |
col_index += 1
|
| 356 |
|
|
|
|
| 357 |
def display_videos_and_links(num_columns=4):
|
| 358 |
"""Displays all .mp4/.webm in a grid, plus text input for prompts."""
|
| 359 |
video_files = [f for f in os.listdir('.') if f.endswith(('.mp4', '.webm'))]
|
|
@@ -379,6 +401,7 @@ def display_videos_and_links(num_columns=4):
|
|
| 379 |
st.error("Invalid input for seconds per frame!")
|
| 380 |
col_index += 1
|
| 381 |
|
|
|
|
| 382 |
# =====================================================================================
|
| 383 |
# 6) MERMAID & PARTIAL SUBGRAPH LOGIC
|
| 384 |
# =====================================================================================
|
|
@@ -410,6 +433,7 @@ def generate_mermaid_html(mermaid_code: str) -> str:
|
|
| 410 |
</html>
|
| 411 |
"""
|
| 412 |
|
|
|
|
| 413 |
def append_model_param(url: str, model_selected: bool) -> str:
|
| 414 |
"""If user selects 'model=1', we append &model=1 or ?model=1 if not present."""
|
| 415 |
if not model_selected:
|
|
@@ -417,17 +441,19 @@ def append_model_param(url: str, model_selected: bool) -> str:
|
|
| 417 |
delimiter = "&" if "?" in url else "?"
|
| 418 |
return f"{url}{delimiter}model=1"
|
| 419 |
|
|
|
|
| 420 |
def inject_base_url(url: str) -> str:
|
| 421 |
"""If link doesn't start with 'http', prepend BASE_URL so it's absolute."""
|
| 422 |
if url.startswith("http"):
|
| 423 |
return url
|
| 424 |
return f"{BASE_URL}{url}"
|
| 425 |
|
|
|
|
| 426 |
# We'll keep the default mermaid that references /?q=...
|
| 427 |
DEFAULT_MERMAID = r"""
|
| 428 |
flowchart LR
|
| 429 |
U((User 😎)) -- "Talk 🗣️" --> LLM[LLM Agent 🤖\nExtract Info]
|
| 430 |
-
click U "/?q=
|
| 431 |
click LLM "/?q=LLM%20Agent%20Extract%20Info" "Open LLM Agent" _blank
|
| 432 |
|
| 433 |
LLM -- "Query 🔍" --> HS[Hybrid Search 🔎\nVector+NER+Lexical]
|
|
@@ -440,10 +466,7 @@ flowchart LR
|
|
| 440 |
click KG "/?q=Knowledge%20Graph%20Ontology+GAR+RAG" "Open Knowledge Graph" _blank
|
| 441 |
"""
|
| 442 |
|
| 443 |
-
|
| 444 |
-
# 🍁 Parsing and building partial subgraphs from lines like "A -- Label --> B"
|
| 445 |
-
# We'll do BFS so we can gather multiple downstream levels if we want.
|
| 446 |
-
# ------------------------------------------------------------------------------------
|
| 447 |
def parse_mermaid_edges(mermaid_text: str):
|
| 448 |
"""
|
| 449 |
🍿 parse_mermaid_edges:
|
|
@@ -462,12 +485,12 @@ def parse_mermaid_edges(mermaid_text: str):
|
|
| 462 |
adjacency[nodeA].append((label, nodeB))
|
| 463 |
return adjacency
|
| 464 |
|
|
|
|
| 465 |
def bfs_subgraph(adjacency, start_node, depth=1):
|
| 466 |
"""
|
| 467 |
🍎 bfs_subgraph:
|
| 468 |
- Gather edges up to 'depth' levels from start_node
|
| 469 |
- If depth=1, only direct edges from node
|
| 470 |
-
- If depth=2, child and grandchild, etc.
|
| 471 |
"""
|
| 472 |
from collections import deque
|
| 473 |
visited = set()
|
|
@@ -487,13 +510,19 @@ def bfs_subgraph(adjacency, start_node, depth=1):
|
|
| 487 |
|
| 488 |
return edges
|
| 489 |
|
|
|
|
| 490 |
def create_subgraph_mermaid(sub_edges, start_node):
|
| 491 |
"""
|
| 492 |
🍄 create_subgraph_mermaid:
|
| 493 |
- build a smaller flowchart snippet with edges from BFS
|
| 494 |
"""
|
| 495 |
sub_mermaid = "flowchart LR\n"
|
| 496 |
-
sub_mermaid += f" %% SearchResult Subgraph
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 497 |
for (A, label, B) in sub_edges:
|
| 498 |
sub_mermaid += f' {A} -- "{label}" --> {B}\n'
|
| 499 |
sub_mermaid += " %% End of partial subgraph\n"
|
|
@@ -537,19 +566,27 @@ def main():
|
|
| 537 |
for line in lines:
|
| 538 |
if "click " in line and '"/?' in line:
|
| 539 |
# try to parse out the URL
|
| 540 |
-
parts = re.split(r'click\s+\S+\s+"([^"]+)"\s+"([^"]+)"\s+
|
| 541 |
-
# For example:
|
| 542 |
-
|
|
|
|
|
|
|
|
|
|
| 543 |
# Reassemble with base URL + optional model param
|
| 544 |
old_url = parts[1]
|
| 545 |
tooltip = parts[2]
|
| 546 |
target = parts[3]
|
|
|
|
| 547 |
# 1) base
|
| 548 |
new_url = inject_base_url(old_url)
|
| 549 |
# 2) model param
|
| 550 |
new_url = append_model_param(new_url, model_selected)
|
| 551 |
|
| 552 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 553 |
new_lines.append(new_line)
|
| 554 |
else:
|
| 555 |
new_lines.append(line)
|
|
@@ -559,32 +596,35 @@ def main():
|
|
| 559 |
final_mermaid = "\n".join(new_lines)
|
| 560 |
adjacency = parse_mermaid_edges(final_mermaid)
|
| 561 |
|
| 562 |
-
# 4) If user clicked a shape
|
| 563 |
-
# We'll do BFS with depth=1 or 2 for demonstration:
|
| 564 |
partial_subgraph_html = ""
|
| 565 |
if q_or_query:
|
| 566 |
-
|
| 567 |
-
|
| 568 |
-
|
| 569 |
-
|
| 570 |
-
possible_keys = []
|
| 571 |
-
for nodeKey in adjacency.keys():
|
| 572 |
-
# e.g. nodeKey might be: 'LLM[LLM Agent 🤖\nExtract Info]'
|
| 573 |
-
# we'll check if q_or_query is substring ignoring spaces
|
| 574 |
-
simplified_key = nodeKey.replace("\\n", " ").replace("[", "").replace("]", "").lower()
|
| 575 |
-
simplified_query = q_or_query.lower().replace("%20", " ")
|
| 576 |
-
if simplified_query in simplified_key:
|
| 577 |
-
possible_keys.append(nodeKey)
|
| 578 |
-
|
| 579 |
-
if possible_keys:
|
| 580 |
-
chosen_node = possible_keys[0]
|
| 581 |
-
st.info(f"Chosen node for subgraph: {chosen_node}")
|
| 582 |
-
sub_edges = bfs_subgraph(adjacency, chosen_node, depth=1)
|
| 583 |
-
if sub_edges:
|
| 584 |
-
sub_mermaid = create_subgraph_mermaid(sub_edges, chosen_node)
|
| 585 |
-
partial_subgraph_html = generate_mermaid_html(sub_mermaid)
|
| 586 |
else:
|
| 587 |
-
st.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 588 |
|
| 589 |
# 5) Show partial subgraph top-center if we have any
|
| 590 |
if partial_subgraph_html:
|
|
@@ -593,6 +633,7 @@ def main():
|
|
| 593 |
|
| 594 |
# 6) Render the top-centered *full* diagram
|
| 595 |
st.title("Full Mermaid Diagram (with Base URL + model=1 logic)")
|
|
|
|
| 596 |
diagram_html = generate_mermaid_html(final_mermaid)
|
| 597 |
components.html(diagram_html, height=400, scrolling=True)
|
| 598 |
|
|
|
|
| 42 |
"Cybernetics": ["Robotic Limbs", "Augmented Eyes"],
|
| 43 |
}
|
| 44 |
|
| 45 |
+
|
| 46 |
def process_text(text):
|
| 47 |
"""🕵️ process_text: detective style—prints lines to Streamlit for debugging."""
|
| 48 |
st.write(f"process_text called with: {text}")
|
| 49 |
|
| 50 |
+
|
| 51 |
def search_arxiv(text):
|
| 52 |
"""🔭 search_arxiv: pretend to search ArXiv, just prints debug for now."""
|
| 53 |
st.write(f"search_arxiv called with: {text}")
|
| 54 |
|
| 55 |
+
|
| 56 |
def SpeechSynthesis(text):
|
| 57 |
"""🗣 SpeechSynthesis: read lines out loud? Here, we log them for demonstration."""
|
| 58 |
st.write(f"SpeechSynthesis called with: {text}")
|
| 59 |
|
| 60 |
+
|
| 61 |
def process_image(image_file, prompt):
|
| 62 |
"""📷 process_image: imagine an AI pipeline for images, here we just log."""
|
| 63 |
return f"[process_image placeholder] {image_file} => {prompt}"
|
| 64 |
|
| 65 |
+
|
| 66 |
def process_video(video_file, seconds_per_frame):
|
| 67 |
"""🎞 process_video: placeholder for video tasks, logs to Streamlit."""
|
| 68 |
st.write(f"[process_video placeholder] {video_file}, {seconds_per_frame} sec/frame")
|
| 69 |
|
| 70 |
+
|
| 71 |
API_URL = "https://huggingface-inference-endpoint-placeholder"
|
| 72 |
API_KEY = "hf_XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX"
|
| 73 |
|
| 74 |
+
|
| 75 |
@st.cache_resource
|
| 76 |
def InferenceLLM(prompt):
|
| 77 |
"""🔮 InferenceLLM: a stub returning a mock response for 'prompt'."""
|
|
|
|
| 84 |
@st.cache_resource
|
| 85 |
def display_glossary_entity(k):
|
| 86 |
"""
|
| 87 |
+
Creates multiple link emojis for a single entity.
|
| 88 |
Each link might point to /?q=..., /?q=<prefix>..., or external sites.
|
| 89 |
"""
|
| 90 |
search_urls = {
|
|
|
|
| 101 |
links_md = ' '.join([f"[{emoji}]({url(k)})" for emoji, url in search_urls.items()])
|
| 102 |
st.markdown(f"**{k}** <small>{links_md}</small>", unsafe_allow_html=True)
|
| 103 |
|
| 104 |
+
|
| 105 |
def display_content_or_image(query):
|
| 106 |
"""
|
| 107 |
If 'query' is in transhuman_glossary or there's an image matching 'images/<query>.png',
|
|
|
|
| 120 |
st.warning("No matching content or image found.")
|
| 121 |
return False
|
| 122 |
|
| 123 |
+
|
| 124 |
def clear_query_params():
|
| 125 |
"""For fully clearing, you'd do a redirect or st.experimental_set_query_params()."""
|
| 126 |
st.warning("Define a redirect or link without query params if you want to truly clear them.")
|
|
|
|
| 137 |
except:
|
| 138 |
return ""
|
| 139 |
|
| 140 |
+
|
| 141 |
@st.cache_resource
|
| 142 |
def create_zip_of_files(files):
|
| 143 |
"""Combine multiple local files into a single .zip for user to download."""
|
|
|
|
| 147 |
zipf.write(file)
|
| 148 |
return zip_name
|
| 149 |
|
| 150 |
+
|
| 151 |
@st.cache_resource
|
| 152 |
def get_zip_download_link(zip_file):
|
| 153 |
"""Return an <a> link to download the given zip_file (base64-encoded)."""
|
|
|
|
| 156 |
b64 = base64.b64encode(data).decode()
|
| 157 |
return f'<a href="data:application/zip;base64,{b64}" download="{zip_file}">Download All</a>'
|
| 158 |
|
| 159 |
+
|
| 160 |
def get_table_download_link(file_path):
|
| 161 |
"""
|
| 162 |
Creates a download link for a single file from your snippet.
|
|
|
|
| 182 |
except:
|
| 183 |
return ''
|
| 184 |
|
| 185 |
+
|
| 186 |
def get_file_size(file_path):
|
| 187 |
"""Get file size in bytes."""
|
| 188 |
return os.path.getsize(file_path)
|
| 189 |
|
| 190 |
+
|
| 191 |
def FileSidebar():
|
| 192 |
"""
|
| 193 |
Renders .md files in the sidebar with open/view/run/delete logic.
|
|
|
|
| 195 |
all_files = glob.glob("*.md")
|
| 196 |
# If you want to filter out short-named or special files:
|
| 197 |
all_files = [f for f in all_files if len(os.path.splitext(f)[0]) >= 5]
|
| 198 |
+
# sorting in place
|
| 199 |
all_files.sort(key=lambda x: (os.path.splitext(x)[1], x), reverse=True)
|
| 200 |
|
| 201 |
# Buttons for "Delete All" and "Download"
|
|
|
|
| 216 |
|
| 217 |
# Each file row
|
| 218 |
for file in all_files:
|
| 219 |
+
col1, col2, col3, col4, col5 = st.sidebar.columns([1, 6, 1, 1, 1])
|
| 220 |
with col1:
|
| 221 |
+
if st.button("🌐", key="md_" + file):
|
| 222 |
file_contents = load_file(file)
|
| 223 |
file_name = file
|
| 224 |
next_action = 'md'
|
|
|
|
| 226 |
with col2:
|
| 227 |
st.markdown(get_table_download_link(file), unsafe_allow_html=True)
|
| 228 |
with col3:
|
| 229 |
+
if st.button("📂", key="open_" + file):
|
| 230 |
file_contents = load_file(file)
|
| 231 |
file_name = file
|
| 232 |
next_action = 'open'
|
|
|
|
| 235 |
st.session_state['filetext'] = file_contents
|
| 236 |
st.session_state['next_action'] = next_action
|
| 237 |
with col4:
|
| 238 |
+
if st.button("▶️", key="read_" + file):
|
| 239 |
file_contents = load_file(file)
|
| 240 |
file_name = file
|
| 241 |
next_action = 'search'
|
| 242 |
st.session_state['next_action'] = next_action
|
| 243 |
with col5:
|
| 244 |
+
if st.button("🗑", key="delete_" + file):
|
| 245 |
os.remove(file)
|
| 246 |
st.rerun()
|
| 247 |
|
|
|
|
| 270 |
if st.button("🔍Run"):
|
| 271 |
st.write("Running GPT logic placeholder...")
|
| 272 |
|
| 273 |
+
|
| 274 |
# =====================================================================================
|
| 275 |
# 4) SCORING / GLOSSARIES
|
| 276 |
# =====================================================================================
|
| 277 |
score_dir = "scores"
|
| 278 |
os.makedirs(score_dir, exist_ok=True)
|
| 279 |
|
| 280 |
+
|
| 281 |
def generate_key(label, header, idx):
|
| 282 |
return f"{header}_{label}_{idx}_key"
|
| 283 |
|
| 284 |
+
|
| 285 |
def update_score(key, increment=1):
|
| 286 |
"""Increment the 'score' for a glossary item in JSON storage."""
|
| 287 |
score_file = os.path.join(score_dir, f"{key}.json")
|
|
|
|
| 296 |
json.dump(score_data, file)
|
| 297 |
return score_data["score"]
|
| 298 |
|
| 299 |
+
|
| 300 |
def load_score(key):
|
| 301 |
"""Load the stored score from .json if it exists, else 0."""
|
| 302 |
file_path = os.path.join(score_dir, f"{key}.json")
|
|
|
|
| 306 |
return score_data["score"]
|
| 307 |
return 0
|
| 308 |
|
| 309 |
+
|
| 310 |
def display_buttons_with_scores(num_columns_text):
|
| 311 |
"""
|
| 312 |
Show glossary items as clickable buttons, each increments a 'score'.
|
|
|
|
| 345 |
newscore = update_score(key.replace('?', ''))
|
| 346 |
st.markdown(f"Scored **{category} - {game} - {term}** -> {newscore}")
|
| 347 |
|
| 348 |
+
|
| 349 |
# =====================================================================================
|
| 350 |
# 5) IMAGES & VIDEOS
|
| 351 |
# =====================================================================================
|
|
|
|
| 375 |
st.write(f"Could not open {image_file}")
|
| 376 |
col_index += 1
|
| 377 |
|
| 378 |
+
|
| 379 |
def display_videos_and_links(num_columns=4):
|
| 380 |
"""Displays all .mp4/.webm in a grid, plus text input for prompts."""
|
| 381 |
video_files = [f for f in os.listdir('.') if f.endswith(('.mp4', '.webm'))]
|
|
|
|
| 401 |
st.error("Invalid input for seconds per frame!")
|
| 402 |
col_index += 1
|
| 403 |
|
| 404 |
+
|
| 405 |
# =====================================================================================
|
| 406 |
# 6) MERMAID & PARTIAL SUBGRAPH LOGIC
|
| 407 |
# =====================================================================================
|
|
|
|
| 433 |
</html>
|
| 434 |
"""
|
| 435 |
|
| 436 |
+
|
| 437 |
def append_model_param(url: str, model_selected: bool) -> str:
|
| 438 |
"""If user selects 'model=1', we append &model=1 or ?model=1 if not present."""
|
| 439 |
if not model_selected:
|
|
|
|
| 441 |
delimiter = "&" if "?" in url else "?"
|
| 442 |
return f"{url}{delimiter}model=1"
|
| 443 |
|
| 444 |
+
|
| 445 |
def inject_base_url(url: str) -> str:
|
| 446 |
"""If link doesn't start with 'http', prepend BASE_URL so it's absolute."""
|
| 447 |
if url.startswith("http"):
|
| 448 |
return url
|
| 449 |
return f"{BASE_URL}{url}"
|
| 450 |
|
| 451 |
+
|
| 452 |
# We'll keep the default mermaid that references /?q=...
|
| 453 |
DEFAULT_MERMAID = r"""
|
| 454 |
flowchart LR
|
| 455 |
U((User 😎)) -- "Talk 🗣️" --> LLM[LLM Agent 🤖\nExtract Info]
|
| 456 |
+
click U "/?q=U" "Open 'User 😎'" _blank
|
| 457 |
click LLM "/?q=LLM%20Agent%20Extract%20Info" "Open LLM Agent" _blank
|
| 458 |
|
| 459 |
LLM -- "Query 🔍" --> HS[Hybrid Search 🔎\nVector+NER+Lexical]
|
|
|
|
| 466 |
click KG "/?q=Knowledge%20Graph%20Ontology+GAR+RAG" "Open Knowledge Graph" _blank
|
| 467 |
"""
|
| 468 |
|
| 469 |
+
|
|
|
|
|
|
|
|
|
|
| 470 |
def parse_mermaid_edges(mermaid_text: str):
|
| 471 |
"""
|
| 472 |
🍿 parse_mermaid_edges:
|
|
|
|
| 485 |
adjacency[nodeA].append((label, nodeB))
|
| 486 |
return adjacency
|
| 487 |
|
| 488 |
+
|
| 489 |
def bfs_subgraph(adjacency, start_node, depth=1):
|
| 490 |
"""
|
| 491 |
🍎 bfs_subgraph:
|
| 492 |
- Gather edges up to 'depth' levels from start_node
|
| 493 |
- If depth=1, only direct edges from node
|
|
|
|
| 494 |
"""
|
| 495 |
from collections import deque
|
| 496 |
visited = set()
|
|
|
|
| 510 |
|
| 511 |
return edges
|
| 512 |
|
| 513 |
+
|
| 514 |
def create_subgraph_mermaid(sub_edges, start_node):
|
| 515 |
"""
|
| 516 |
🍄 create_subgraph_mermaid:
|
| 517 |
- build a smaller flowchart snippet with edges from BFS
|
| 518 |
"""
|
| 519 |
sub_mermaid = "flowchart LR\n"
|
| 520 |
+
sub_mermaid += f" %% SearchResult Subgraph for {start_node}\n"
|
| 521 |
+
if not sub_edges:
|
| 522 |
+
# If no edges, show just the node
|
| 523 |
+
sub_mermaid += f" {start_node}\n"
|
| 524 |
+
sub_mermaid += " %% End of partial subgraph\n"
|
| 525 |
+
return sub_mermaid
|
| 526 |
for (A, label, B) in sub_edges:
|
| 527 |
sub_mermaid += f' {A} -- "{label}" --> {B}\n'
|
| 528 |
sub_mermaid += " %% End of partial subgraph\n"
|
|
|
|
| 566 |
for line in lines:
|
| 567 |
if "click " in line and '"/?' in line:
|
| 568 |
# try to parse out the URL
|
| 569 |
+
parts = re.split(r'click\s+\S+\s+"([^"]+)"\s+"([^"]+)"\s+(\S+)', line)
|
| 570 |
+
# For example:
|
| 571 |
+
# 'click U "/?q=U" "Open 'User 😎'" _blank'
|
| 572 |
+
# might become:
|
| 573 |
+
# parts = [prefix, '/?q=U', "Open 'User 😎'", '_blank', '']
|
| 574 |
+
if len(parts) >= 4:
|
| 575 |
# Reassemble with base URL + optional model param
|
| 576 |
old_url = parts[1]
|
| 577 |
tooltip = parts[2]
|
| 578 |
target = parts[3]
|
| 579 |
+
|
| 580 |
# 1) base
|
| 581 |
new_url = inject_base_url(old_url)
|
| 582 |
# 2) model param
|
| 583 |
new_url = append_model_param(new_url, model_selected)
|
| 584 |
|
| 585 |
+
# Rebuild the line
|
| 586 |
+
new_line = f"{parts[0]}\"{new_url}\" \"{tooltip}\" {target}"
|
| 587 |
+
# If there's a remainder (parts[4]) it might be an empty string
|
| 588 |
+
if len(parts) > 4:
|
| 589 |
+
new_line += parts[4]
|
| 590 |
new_lines.append(new_line)
|
| 591 |
else:
|
| 592 |
new_lines.append(line)
|
|
|
|
| 596 |
final_mermaid = "\n".join(new_lines)
|
| 597 |
adjacency = parse_mermaid_edges(final_mermaid)
|
| 598 |
|
| 599 |
+
# 4) If user clicked a shape => we show a partial subgraph as "SearchResult"
|
|
|
|
| 600 |
partial_subgraph_html = ""
|
| 601 |
if q_or_query:
|
| 602 |
+
# Special-case if user clicked "User" => q=U => we know the node is "U((User 😎))"
|
| 603 |
+
if q_or_query == "U":
|
| 604 |
+
chosen_node = "U((User 😎))"
|
| 605 |
+
st.info(f"process_text called with: {PromptPrefix}{q_or_query} => forcing node U((User 😎))")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 606 |
else:
|
| 607 |
+
st.info(f"process_text called with: {PromptPrefix}{q_or_query}")
|
| 608 |
+
# Attempt to find a node whose ID or label includes q_or_query:
|
| 609 |
+
possible_keys = []
|
| 610 |
+
for nodeKey in adjacency.keys():
|
| 611 |
+
# e.g. nodeKey might be 'U((User 😎))'
|
| 612 |
+
simplified_key = nodeKey.replace("\\n", " ").replace("[", "").replace("]", "").lower()
|
| 613 |
+
simplified_query = q_or_query.lower().replace("%20", " ")
|
| 614 |
+
if simplified_query in simplified_key:
|
| 615 |
+
possible_keys.append(nodeKey)
|
| 616 |
+
|
| 617 |
+
if possible_keys:
|
| 618 |
+
chosen_node = possible_keys[0]
|
| 619 |
+
else:
|
| 620 |
+
chosen_node = None
|
| 621 |
+
st.warning("No adjacency node matched the query param's text. Subgraph is empty.")
|
| 622 |
+
|
| 623 |
+
if chosen_node:
|
| 624 |
+
# BFS subgraph for chosen_node with depth=1
|
| 625 |
+
sub_edges = bfs_subgraph(adjacency, chosen_node, depth=1)
|
| 626 |
+
sub_mermaid = create_subgraph_mermaid(sub_edges, chosen_node)
|
| 627 |
+
partial_subgraph_html = generate_mermaid_html(sub_mermaid)
|
| 628 |
|
| 629 |
# 5) Show partial subgraph top-center if we have any
|
| 630 |
if partial_subgraph_html:
|
|
|
|
| 633 |
|
| 634 |
# 6) Render the top-centered *full* diagram
|
| 635 |
st.title("Full Mermaid Diagram (with Base URL + model=1 logic)")
|
| 636 |
+
|
| 637 |
diagram_html = generate_mermaid_html(final_mermaid)
|
| 638 |
components.html(diagram_html, height=400, scrolling=True)
|
| 639 |
|