Spaces:
Sleeping
Sleeping
| import streamlit as st | |
| import anthropic, openai, base64, cv2, glob, json, math, os, pytz, random, re, requests, textract, time, zipfile | |
| import plotly.graph_objects as go | |
| import streamlit.components.v1 as components | |
| from datetime import datetime | |
| from audio_recorder_streamlit import audio_recorder | |
| from bs4 import BeautifulSoup | |
| from collections import defaultdict, deque, Counter | |
| from dotenv import load_dotenv | |
| from gradio_client import Client | |
| from huggingface_hub import InferenceClient | |
| from io import BytesIO | |
| from PIL import Image | |
| from PyPDF2 import PdfReader | |
| from urllib.parse import quote | |
| from xml.etree import ElementTree as ET | |
| from openai import OpenAI | |
| import extra_streamlit_components as stx | |
| from streamlit.runtime.scriptrunner import get_script_run_ctx | |
| import asyncio | |
| import edge_tts | |
| # 🎯 1. Core Configuration & Setup | |
| st.set_page_config( | |
| page_title="🚲TalkingAIResearcher🏆", | |
| page_icon="🚲🏆", | |
| layout="wide", | |
| initial_sidebar_state="auto", | |
| menu_items={ | |
| 'Get Help': 'https://huggingface.co/awacke1', | |
| 'Report a bug': 'https://huggingface.co/spaces/awacke1', | |
| 'About': "🚲TalkingAIResearcher🏆" | |
| } | |
| ) | |
| load_dotenv() | |
| # Add available English voices for Edge TTS | |
| EDGE_TTS_VOICES = [ | |
| "en-US-AriaNeural", # Default voice | |
| "en-US-GuyNeural", | |
| "en-US-JennyNeural", | |
| "en-GB-SoniaNeural", | |
| "en-GB-RyanNeural", | |
| "en-AU-NatashaNeural", | |
| "en-AU-WilliamNeural", | |
| "en-CA-ClaraNeural", | |
| "en-CA-LiamNeural" | |
| ] | |
| # Initialize session state variables | |
| if 'tts_voice' not in st.session_state: | |
| st.session_state['tts_voice'] = EDGE_TTS_VOICES[0] # Default voice | |
| if 'audio_format' not in st.session_state: | |
| st.session_state['audio_format'] = 'mp3' # 🆕 Default audio format | |
| # 🔑 2. API Setup & Clients | |
| openai_api_key = os.getenv('OPENAI_API_KEY', "") | |
| anthropic_key = os.getenv('ANTHROPIC_API_KEY_3', "") | |
| xai_key = os.getenv('xai',"") | |
| if 'OPENAI_API_KEY' in st.secrets: | |
| openai_api_key = st.secrets['OPENAI_API_KEY'] | |
| if 'ANTHROPIC_API_KEY' in st.secrets: | |
| anthropic_key = st.secrets["ANTHROPIC_API_KEY"] | |
| openai.api_key = openai_api_key | |
| claude_client = anthropic.Anthropic(api_key=anthropic_key) | |
| openai_client = OpenAI(api_key=openai.api_key, organization=os.getenv('OPENAI_ORG_ID')) | |
| HF_KEY = os.getenv('HF_KEY') | |
| API_URL = os.getenv('API_URL') | |
| # 📝 3. Session State Management | |
| if 'transcript_history' not in st.session_state: | |
| st.session_state['transcript_history'] = [] | |
| if 'chat_history' not in st.session_state: | |
| st.session_state['chat_history'] = [] | |
| if 'openai_model' not in st.session_state: | |
| st.session_state['openai_model'] = "gpt-4o-2024-05-13" | |
| if 'messages' not in st.session_state: | |
| st.session_state['messages'] = [] | |
| if 'last_voice_input' not in st.session_state: | |
| st.session_state['last_voice_input'] = "" | |
| if 'editing_file' not in st.session_state: | |
| st.session_state['editing_file'] = None | |
| if 'edit_new_name' not in st.session_state: | |
| st.session_state['edit_new_name'] = "" | |
| if 'edit_new_content' not in st.session_state: | |
| st.session_state['edit_new_content'] = "" | |
| if 'viewing_prefix' not in st.session_state: | |
| st.session_state['viewing_prefix'] = None | |
| if 'should_rerun' not in st.session_state: | |
| st.session_state['should_rerun'] = False | |
| if 'old_val' not in st.session_state: | |
| st.session_state['old_val'] = None | |
| if 'last_query' not in st.session_state: | |
| st.session_state['last_query'] = "" # 🆕 Store the last query for zip naming | |
| # 🎨 4. Custom CSS | |
| st.markdown(""" | |
| <style> | |
| .main { background: linear-gradient(to right, #1a1a1a, #2d2d2d); color: #fff; } | |
| .stMarkdown { font-family: 'Helvetica Neue', sans-serif; } | |
| .stButton>button { | |
| margin-right: 0.5rem; | |
| } | |
| </style> | |
| """, unsafe_allow_html=True) | |
| FILE_EMOJIS = { | |
| "md": "📝", | |
| "mp3": "🎵", | |
| "wav": "🔊" # 🆕 Add emoji for WAV | |
| } | |
| # 🧠 5. High-Information Content Extraction | |
| def get_high_info_terms(text: str, top_n=10) -> list: | |
| """Extract high-information terms from text, including key phrases.""" | |
| stop_words = set([ | |
| 'the', 'a', 'an', 'and', 'or', 'but', 'in', 'on', 'at', 'to', 'for', 'of', 'with', | |
| 'by', 'from', 'up', 'about', 'into', 'over', 'after', 'is', 'are', 'was', 'were', | |
| 'be', 'been', 'being', 'have', 'has', 'had', 'do', 'does', 'did', 'will', 'would', | |
| 'should', 'could', 'might', 'must', 'shall', 'can', 'may', 'this', 'that', 'these', | |
| 'those', 'i', 'you', 'he', 'she', 'it', 'we', 'they', 'what', 'which', 'who', | |
| 'when', 'where', 'why', 'how', 'all', 'any', 'both', 'each', 'few', 'more', 'most', | |
| 'other', 'some', 'such', 'than', 'too', 'very', 'just', 'there' | |
| ]) | |
| key_phrases = [ | |
| 'artificial intelligence', 'machine learning', 'deep learning', 'neural network', | |
| 'personal assistant', 'natural language', 'computer vision', 'data science', | |
| 'reinforcement learning', 'knowledge graph', 'semantic search', 'time series', | |
| 'large language model', 'transformer model', 'attention mechanism', | |
| 'autonomous system', 'edge computing', 'quantum computing', 'blockchain technology', | |
| 'cognitive science', 'human computer', 'decision making', 'arxiv search', | |
| 'research paper', 'scientific study', 'empirical analysis' | |
| ] | |
| # Extract bi-grams and uni-grams | |
| words = re.findall(r'\b\w+(?:-\w+)*\b', text.lower()) | |
| bi_grams = [' '.join(pair) for pair in zip(words, words[1:])] | |
| combined = words + bi_grams | |
| # Filter out stop words and short words | |
| filtered = [ | |
| term for term in combined | |
| if term not in stop_words | |
| and len(term.split()) <= 2 # Limit to uni-grams and bi-grams | |
| and any(c.isalpha() for c in term) | |
| ] | |
| # Count frequencies | |
| counter = Counter(filtered) | |
| most_common = [term for term, freq in counter.most_common(top_n)] | |
| return most_common | |
| def clean_text_for_filename(text: str) -> str: | |
| """Remove punctuation and short filler words, return a compact string.""" | |
| text = text.lower() | |
| text = re.sub(r'[^\w\s-]', '', text) | |
| words = text.split() | |
| stop_short = set(['the','and','for','with','this','that','from','just','very','then','been','only','also','about']) | |
| filtered = [w for w in words if len(w)>3 and w not in stop_short] | |
| return '_'.join(filtered)[:200] | |
| # 📁 6. File Operations | |
| def generate_filename(prompt, response, file_type="md"): | |
| """ | |
| Generate filename with meaningful terms and short dense clips from prompt & response. | |
| The filename should be about 150 chars total, include high-info terms, and a clipped snippet. | |
| """ | |
| prefix = datetime.now().strftime("%y%m_%H%M") + "_" | |
| combined = (prompt + " " + response).strip() | |
| info_terms = get_high_info_terms(combined, top_n=10) | |
| # Include a short snippet from prompt and response | |
| snippet = (prompt[:100] + " " + response[:100]).strip() | |
| snippet_cleaned = clean_text_for_filename(snippet) | |
| # Combine info terms and snippet | |
| name_parts = info_terms + [snippet_cleaned] | |
| full_name = '_'.join(name_parts) | |
| # Trim to ~150 chars | |
| if len(full_name) > 150: | |
| full_name = full_name[:150] | |
| filename = f"{prefix}{full_name}.{file_type}" | |
| return filename | |
| def create_file(prompt, response, file_type="md"): | |
| """Create file with intelligent naming""" | |
| filename = generate_filename(prompt.strip(), response.strip(), file_type) | |
| with open(filename, 'w', encoding='utf-8') as f: | |
| f.write(prompt + "\n\n" + response) | |
| return filename | |
| def get_download_link(file, file_type="zip"): | |
| """Generate download link for file""" | |
| with open(file, "rb") as f: | |
| b64 = base64.b64encode(f.read()).decode() | |
| if file_type == "zip": | |
| return f'<a href="data:application/zip;base64,{b64}" download="{os.path.basename(file)}">📂 Download {os.path.basename(file)}</a>' | |
| elif file_type == "mp3": | |
| return f'<a href="data:audio/mpeg;base64,{b64}" download="{os.path.basename(file)}">🎵 Download {os.path.basename(file)}</a>' | |
| elif file_type == "wav": | |
| return f'<a href="data:audio/wav;base64,{b64}" download="{os.path.basename(file)}">🔊 Download {os.path.basename(file)}</a>' # 🆕 WAV download link | |
| elif file_type == "md": | |
| return f'<a href="data:text/markdown;base64,{b64}" download="{os.path.basename(file)}">📝 Download {os.path.basename(file)}</a>' | |
| else: | |
| return f'<a href="data:application/octet-stream;base64,{b64}" download="{os.path.basename(file)}">Download {os.path.basename(file)}</a>' | |
| # 🔊 7. Audio Processing | |
| def clean_for_speech(text: str) -> str: | |
| """Clean text for speech synthesis""" | |
| text = text.replace("\n", " ") | |
| text = text.replace("</s>", " ") | |
| text = text.replace("#", "") | |
| text = re.sub(r"\(https?:\/\/[^\)]+\)", "", text) | |
| text = re.sub(r"\s+", " ", text).strip() | |
| return text | |
| def speech_synthesis_html(result): | |
| """Create HTML for speech synthesis""" | |
| html_code = f""" | |
| <html><body> | |
| <script> | |
| var msg = new SpeechSynthesisUtterance("{result.replace('"', '')}"); | |
| window.speechSynthesis.speak(msg); | |
| </script> | |
| </body></html> | |
| """ | |
| components.html(html_code, height=0) | |
| async def edge_tts_generate_audio(text, voice="en-US-AriaNeural", rate=0, pitch=0, file_format="mp3"): | |
| """Generate audio using Edge TTS""" | |
| text = clean_for_speech(text) | |
| if not text.strip(): | |
| return None | |
| rate_str = f"{rate:+d}%" | |
| pitch_str = f"{pitch:+d}Hz" | |
| communicate = edge_tts.Communicate(text, voice, rate=rate_str, pitch=pitch_str) | |
| out_fn = generate_filename(text, text, file_type=file_format) | |
| await communicate.save(out_fn) | |
| return out_fn | |
| def speak_with_edge_tts(text, voice="en-US-AriaNeural", rate=0, pitch=0, file_format="mp3"): | |
| """Wrapper for edge TTS generation""" | |
| return asyncio.run(edge_tts_generate_audio(text, voice, rate, pitch, file_format)) | |
| def play_and_download_audio(file_path, file_type="mp3"): | |
| """Play and provide download link for audio""" | |
| if file_path and os.path.exists(file_path): | |
| if file_type == "mp3": | |
| st.audio(file_path) | |
| elif file_type == "wav": | |
| st.audio(file_path) | |
| dl_link = get_download_link(file_path, file_type=file_type) | |
| st.markdown(dl_link, unsafe_allow_html=True) | |
| # 🎬 8. Media Processing | |
| def process_image(image_path, user_prompt): | |
| """Process image with GPT-4V""" | |
| with open(image_path, "rb") as imgf: | |
| image_data = imgf.read() | |
| b64img = base64.b64encode(image_data).decode("utf-8") | |
| resp = openai_client.chat.completions.create( | |
| model=st.session_state["openai_model"], | |
| messages=[ | |
| {"role": "system", "content": "You are a helpful assistant."}, | |
| {"role": "user", "content": [ | |
| {"type": "text", "text": user_prompt}, | |
| {"type": "image_url", "image_url": {"url": f"data:image/png;base64,{b64img}"}} | |
| ]} | |
| ], | |
| temperature=0.0, | |
| ) | |
| return resp.choices[0].message.content | |
| def process_audio_file(audio_path): | |
| """Process audio with Whisper""" | |
| with open(audio_path, "rb") as f: | |
| transcription = openai_client.audio.transcriptions.create(model="whisper-1", file=f) | |
| st.session_state.messages.append({"role": "user", "content": transcription.text}) | |
| return transcription.text | |
| def process_video(video_path, seconds_per_frame=1): | |
| """Extract frames from video""" | |
| vid = cv2.VideoCapture(video_path) | |
| total = int(vid.get(cv2.CAP_PROP_FRAME_COUNT)) | |
| fps = vid.get(cv2.CAP_PROP_FPS) | |
| skip = int(fps*seconds_per_frame) | |
| frames_b64 = [] | |
| for i in range(0, total, skip): | |
| vid.set(cv2.CAP_PROP_POS_FRAMES, i) | |
| ret, frame = vid.read() | |
| if not ret: | |
| break | |
| _, buf = cv2.imencode(".jpg", frame) | |
| frames_b64.append(base64.b64encode(buf).decode("utf-8")) | |
| vid.release() | |
| return frames_b64 | |
| def process_video_with_gpt(video_path, prompt): | |
| """Analyze video frames with GPT-4V""" | |
| frames = process_video(video_path) | |
| resp = openai_client.chat.completions.create( | |
| model=st.session_state["openai_model"], | |
| messages=[ | |
| {"role":"system","content":"Analyze video frames."}, | |
| {"role":"user","content":[ | |
| {"type":"text","text":prompt}, | |
| *[{"type":"image_url","image_url":{"url":f"data:image/jpeg;base64,{fr}"}} for fr in frames] | |
| ]} | |
| ] | |
| ) | |
| return resp.choices[0].message.content | |
| # 🤖 9. AI Model Integration | |
| def save_full_transcript(query, text): | |
| """Save full transcript of Arxiv results as a file.""" | |
| create_file(query, text, "md") | |
| def parse_arxiv_refs(ref_text: str): | |
| """ | |
| Parse papers by finding lines with two pipe characters as title lines. | |
| Returns list of paper dictionaries with audio files. | |
| """ | |
| if not ref_text: | |
| return [] | |
| results = [] | |
| current_paper = {} | |
| lines = ref_text.split('\n') | |
| for i, line in enumerate(lines): | |
| # Check if this is a title line (contains exactly 2 pipe characters) | |
| if line.count('|') == 2: | |
| # If we have a previous paper, add it to results | |
| if current_paper: | |
| results.append(current_paper) | |
| if len(results) >= 20: # Limit to 20 papers | |
| break | |
| # Parse new paper header | |
| try: | |
| # Remove ** and split by | | |
| header_parts = line.strip('* ').split('|') | |
| date = header_parts[0].strip() | |
| title = header_parts[1].strip() | |
| # Extract arXiv URL if present | |
| url_match = re.search(r'(https://arxiv.org/\S+)', line) | |
| url = url_match.group(1) if url_match else f"paper_{len(results)}" | |
| current_paper = { | |
| 'date': date, | |
| 'title': title, | |
| 'url': url, | |
| 'authors': '', | |
| 'summary': '', | |
| 'content_start': i + 1 # Track where content begins | |
| } | |
| except Exception as e: | |
| st.warning(f"Error parsing paper header: {str(e)}") | |
| current_paper = {} | |
| continue | |
| # If we have a current paper and this isn't a title line, add to content | |
| elif current_paper: | |
| if not current_paper['authors']: # First line after title is authors | |
| current_paper['authors'] = line.strip('* ') | |
| else: # Rest is summary | |
| if current_paper['summary']: | |
| current_paper['summary'] += ' ' + line.strip() | |
| else: | |
| current_paper['summary'] = line.strip() | |
| # Don't forget the last paper | |
| if current_paper: | |
| results.append(current_paper) | |
| return results[:20] # Ensure we return maximum 20 papers | |
| def create_paper_audio_files(papers, input_question): | |
| """ | |
| Create audio files for each paper's content and add file paths to paper dict. | |
| Also, display each audio as it's generated. | |
| """ | |
| # Collect all content for combined summary | |
| combined_titles = [] | |
| for paper in papers: | |
| try: | |
| # Generate audio for full content only | |
| full_text = f"{paper['title']} by {paper['authors']}. {paper['summary']}" | |
| full_text = clean_for_speech(full_text) | |
| # Determine file format based on user selection | |
| file_format = st.session_state['audio_format'] | |
| full_file = speak_with_edge_tts(full_text, voice=st.session_state['tts_voice'], file_format=file_format) | |
| paper['full_audio'] = full_file | |
| # Display the audio immediately after generation | |
| st.write(f"### {FILE_EMOJIS.get(file_format, '')} {os.path.basename(full_file)}") | |
| play_and_download_audio(full_file, file_type=file_format) | |
| combined_titles.append(paper['title']) | |
| except Exception as e: | |
| st.warning(f"Error generating audio for paper {paper['title']}: {str(e)}") | |
| paper['full_audio'] = None | |
| # After all individual audios, create a combined summary audio | |
| if combined_titles: | |
| combined_text = f"Here are the titles of the papers related to your query: {'; '.join(combined_titles)}. Your original question was: {input_question}" | |
| file_format = st.session_state['audio_format'] | |
| combined_file = speak_with_edge_tts(combined_text, voice=st.session_state['tts_voice'], file_format=file_format) | |
| st.write(f"### {FILE_EMOJIS.get(file_format, '')} Combined Summary Audio") | |
| play_and_download_audio(combined_file, file_type=file_format) | |
| papers.append({'title': 'Combined Summary', 'full_audio': combined_file}) | |
| def display_papers(papers): | |
| """ | |
| Display papers with their audio controls using URLs as unique keys. | |
| """ | |
| st.write("## Research Papers") | |
| papercount=0 | |
| for idx, paper in enumerate(papers): | |
| papercount = papercount + 1 | |
| if (papercount<=20): | |
| with st.expander(f"{papercount}. 📄 {paper['title']}", expanded=True): | |
| st.markdown(f"**{paper['date']} | {paper['title']} | ⬇️**") | |
| st.markdown(f"*{paper['authors']}*") | |
| st.markdown(paper['summary']) | |
| # Single audio control for full content | |
| if paper.get('full_audio'): | |
| st.write("📚 Paper Audio") | |
| file_ext = os.path.splitext(paper['full_audio'])[1].lower().strip('.') | |
| if file_ext == "mp3": | |
| st.audio(paper['full_audio']) | |
| elif file_ext == "wav": | |
| st.audio(paper['full_audio']) | |
| def perform_ai_lookup(q, vocal_summary=True, extended_refs=False, | |
| titles_summary=True, full_audio=False): | |
| """Perform Arxiv search with audio generation per paper.""" | |
| start = time.time() | |
| # Query the HF RAG pipeline | |
| client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern") | |
| refs = client.predict(q, 20, "Semantic Search", | |
| "mistralai/Mixtral-8x7B-Instruct-v0.1", | |
| api_name="/update_with_rag_md")[0] | |
| r2 = client.predict(q, "mistralai/Mixtral-8x7B-Instruct-v0.1", | |
| True, api_name="/ask_llm") | |
| # Combine for final text output | |
| result = f"### 🔎 {q}\n\n{r2}\n\n{refs}" | |
| st.markdown(result) | |
| # Parse and process papers | |
| papers = parse_arxiv_refs(refs) | |
| if papers: | |
| create_paper_audio_files(papers, input_question=q) | |
| display_papers(papers) | |
| else: | |
| st.warning("No papers found in the response.") | |
| elapsed = time.time()-start | |
| st.write(f"**Total Elapsed:** {elapsed:.2f} s") | |
| # Save full transcript | |
| create_file(q, result, "md") | |
| return result | |
| def process_with_gpt(text): | |
| """Process text with GPT-4""" | |
| if not text: | |
| return | |
| st.session_state.messages.append({"role":"user","content":text}) | |
| with st.chat_message("user"): | |
| st.markdown(text) | |
| with st.chat_message("assistant"): | |
| c = openai_client.chat.completions.create( | |
| model=st.session_state["openai_model"], | |
| messages=st.session_state.messages, | |
| stream=False | |
| ) | |
| ans = c.choices[0].message.content | |
| st.write("GPT-4o: " + ans) | |
| create_file(text, ans, "md") | |
| st.session_state.messages.append({"role":"assistant","content":ans}) | |
| return ans | |
| def process_with_claude(text): | |
| """Process text with Claude""" | |
| if not text: | |
| return | |
| with st.chat_message("user"): | |
| st.markdown(text) | |
| with st.chat_message("assistant"): | |
| r = claude_client.messages.create( | |
| model="claude-3-sonnet-20240229", | |
| max_tokens=1000, | |
| messages=[{"role":"user","content":text}] | |
| ) | |
| ans = r.content[0].text | |
| st.write("Claude-3.5: " + ans) | |
| create_file(text, ans, "md") | |
| st.session_state.chat_history.append({"user":text,"claude":ans}) | |
| return ans | |
| # 📂 10. File Management | |
| def create_zip_of_files(md_files, mp3_files, wav_files, input_question): | |
| """Create zip with intelligent naming based on top 10 common words.""" | |
| # Exclude 'readme.md' | |
| md_files = [f for f in md_files if os.path.basename(f).lower() != 'readme.md'] | |
| all_files = md_files + mp3_files + wav_files | |
| if not all_files: | |
| return None | |
| # Collect content for high-info term extraction | |
| all_content = [] | |
| for f in all_files: | |
| if f.endswith('.md'): | |
| with open(f, 'r', encoding='utf-8') as file: | |
| all_content.append(file.read()) | |
| elif f.endswith('.mp3') or f.endswith('.wav'): | |
| # Replace underscores with spaces and extract basename without extension | |
| basename = os.path.splitext(os.path.basename(f))[0] | |
| words = basename.replace('_', ' ') | |
| all_content.append(words) | |
| # Include the input question | |
| all_content.append(input_question) | |
| combined_content = " ".join(all_content) | |
| info_terms = get_high_info_terms(combined_content, top_n=10) | |
| timestamp = datetime.now().strftime("%y%m_%H%M") | |
| name_text = '_'.join(term.replace(' ', '-') for term in info_terms[:10]) | |
| zip_name = f"{timestamp}_{name_text}.zip" | |
| with zipfile.ZipFile(zip_name,'w') as z: | |
| for f in all_files: | |
| z.write(f) | |
| return zip_name | |
| def load_files_for_sidebar(): | |
| """Load and group files for sidebar display""" | |
| md_files = glob.glob("*.md") | |
| mp3_files = glob.glob("*.mp3") | |
| wav_files = glob.glob("*.wav") # 🆕 Load WAV files | |
| md_files = [f for f in md_files if os.path.basename(f).lower() != 'readme.md'] | |
| all_files = md_files + mp3_files + wav_files | |
| groups = defaultdict(list) | |
| for f in all_files: | |
| # Treat underscores as spaces and split into words | |
| words = os.path.basename(f).replace('_', ' ').split() | |
| # Extract keywords from filename | |
| keywords = get_high_info_terms(' '.join(words), top_n=5) | |
| group_name = '_'.join(keywords) if keywords else 'Miscellaneous' | |
| groups[group_name].append(f) | |
| # Sort groups based on latest file modification time | |
| sorted_groups = sorted(groups.items(), key=lambda x: max(os.path.getmtime(f) for f in x[1]), reverse=True) | |
| return sorted_groups | |
| def extract_keywords_from_md(files): | |
| """Extract keywords from markdown files""" | |
| text = "" | |
| for f in files: | |
| if f.endswith(".md"): | |
| c = open(f,'r',encoding='utf-8').read() | |
| text += " " + c | |
| return get_high_info_terms(text, top_n=5) | |
| def display_file_manager_sidebar(groups_sorted): | |
| """Display file manager in sidebar""" | |
| st.sidebar.title("🎵 Audio & Docs Manager") | |
| all_md = [] | |
| all_mp3 = [] | |
| all_wav = [] # 🆕 List to hold WAV files | |
| for group_name, files in groups_sorted: | |
| for f in files: | |
| if f.endswith(".md"): | |
| all_md.append(f) | |
| elif f.endswith(".mp3"): | |
| all_mp3.append(f) | |
| elif f.endswith(".wav"): | |
| all_wav.append(f) # 🆕 Append WAV files | |
| top_bar = st.sidebar.columns(4) # 🆕 Adjusted columns to accommodate WAV | |
| with top_bar[0]: | |
| if st.button("🗑 DelAllMD"): | |
| for f in all_md: | |
| os.remove(f) | |
| st.session_state.should_rerun = True | |
| with top_bar[1]: | |
| if st.button("🗑 DelAllMP3"): | |
| for f in all_mp3: | |
| os.remove(f) | |
| st.session_state.should_rerun = True | |
| with top_bar[2]: | |
| if st.button("🗑 DelAllWAV"): | |
| for f in all_wav: | |
| os.remove(f) | |
| st.session_state.should_rerun = True | |
| with top_bar[3]: | |
| if st.button("⬇️ ZipAll"): | |
| zip_name = create_zip_of_files(all_md, all_mp3, all_wav, input_question=st.session_state.get('last_query', '')) | |
| if zip_name: | |
| st.sidebar.markdown(get_download_link(zip_name, file_type="zip"), unsafe_allow_html=True) | |
| for group_name, files in groups_sorted: | |
| keywords_str = group_name.replace('_', ' ') if group_name else "No Keywords" | |
| with st.sidebar.expander(f"{FILE_EMOJIS.get('md', '')} {group_name} Files ({len(files)}) - KW: {keywords_str}", expanded=True): | |
| c1,c2 = st.columns(2) | |
| with c1: | |
| if st.button("👀ViewGrp", key="view_group_"+group_name): | |
| st.session_state.viewing_prefix = group_name | |
| with c2: | |
| if st.button("🗑DelGrp", key="del_group_"+group_name): | |
| for f in files: | |
| os.remove(f) | |
| st.success(f"Deleted group {group_name}!") | |
| st.session_state.should_rerun = True | |
| for f in files: | |
| fname = os.path.basename(f) | |
| ctime = datetime.fromtimestamp(os.path.getmtime(f)).strftime("%Y-%m-%d %H:%M:%S") | |
| st.write(f"**{fname}** - {ctime}") | |
| # 🎯 11. Main Application | |
| def main(): | |
| st.sidebar.markdown("### 🚲BikeAI🏆 Multi-Agent Research") | |
| # Add voice selector to sidebar | |
| st.sidebar.markdown("### 🎤 Voice Settings") | |
| selected_voice = st.sidebar.selectbox( | |
| "Select TTS Voice:", | |
| options=EDGE_TTS_VOICES, | |
| index=EDGE_TTS_VOICES.index(st.session_state['tts_voice']) | |
| ) | |
| # Add audio format selector to sidebar | |
| st.sidebar.markdown("### 🔊 Audio Format") | |
| selected_format = st.sidebar.radio( | |
| "Choose Audio Format:", | |
| options=["MP3", "WAV"], | |
| index=0 # Default to MP3 | |
| ) | |
| # Update session state if voice or format changes | |
| if selected_voice != st.session_state['tts_voice']: | |
| st.session_state['tts_voice'] = selected_voice | |
| st.rerun() | |
| if selected_format.lower() != st.session_state['audio_format']: | |
| st.session_state['audio_format'] = selected_format.lower() | |
| st.rerun() | |
| tab_main = st.radio("Action:",["🎤 Voice","📸 Media","🔍 ArXiv","📝 Editor"],horizontal=True) | |
| mycomponent = components.declare_component("mycomponent", path="mycomponent") | |
| val = mycomponent(my_input_value="Hello") | |
| # Show input in a text box for editing if detected | |
| if val: | |
| val_stripped = val.replace('\\n', ' ') | |
| edited_input = st.text_area("✏️ Edit Input:", value=val_stripped, height=100) | |
| #edited_input = edited_input.replace('\n', ' ') | |
| run_option = st.selectbox("Model:", ["Arxiv", "GPT-4o", "Claude-3.5"]) | |
| col1, col2 = st.columns(2) | |
| with col1: | |
| autorun = st.checkbox("⚙ AutoRun", value=True) | |
| with col2: | |
| full_audio = st.checkbox("📚FullAudio", value=False, | |
| help="Generate full audio response") | |
| input_changed = (val != st.session_state.old_val) | |
| if autorun and input_changed: | |
| st.session_state.old_val = val | |
| st.session_state.last_query = edited_input # Store the last query for zip naming | |
| if run_option == "Arxiv": | |
| perform_ai_lookup(edited_input, vocal_summary=True, extended_refs=False, | |
| titles_summary=True, full_audio=full_audio) | |
| else: | |
| if run_option == "GPT-4o": | |
| process_with_gpt(edited_input) | |
| elif run_option == "Claude-3.5": | |
| process_with_claude(edited_input) | |
| else: | |
| if st.button("▶ Run"): | |
| st.session_state.old_val = val | |
| st.session_state.last_query = edited_input # Store the last query for zip naming | |
| if run_option == "Arxiv": | |
| perform_ai_lookup(edited_input, vocal_summary=True, extended_refs=False, | |
| titles_summary=True, full_audio=full_audio) | |
| else: | |
| if run_option == "GPT-4o": | |
| process_with_gpt(edited_input) | |
| elif run_option == "Claude-3.5": | |
| process_with_claude(edited_input) | |
| if tab_main == "🔍 ArXiv": | |
| st.subheader("🔍 Query ArXiv") | |
| q = st.text_input("🔍 Query:") | |
| st.markdown("### 🎛 Options") | |
| vocal_summary = st.checkbox("🎙ShortAudio", value=True) | |
| extended_refs = st.checkbox("📜LongRefs", value=False) | |
| titles_summary = st.checkbox("🔖TitlesOnly", value=True) | |
| full_audio = st.checkbox("📚FullAudio", value=False, | |
| help="Full audio of results") | |
| full_transcript = st.checkbox("🧾FullTranscript", value=False, | |
| help="Generate a full transcript file") | |
| if q and st.button("🔍Run"): | |
| st.session_state.last_query = q # Store the last query for zip naming | |
| result = perform_ai_lookup(q, vocal_summary=vocal_summary, extended_refs=extended_refs, | |
| titles_summary=titles_summary, full_audio=full_audio) | |
| if full_transcript: | |
| save_full_transcript(q, result) | |
| st.markdown("### Change Prompt & Re-Run") | |
| q_new = st.text_input("🔄 Modify Query:") | |
| if q_new and st.button("🔄 Re-Run with Modified Query"): | |
| st.session_state.last_query = q_new # Update last query | |
| result = perform_ai_lookup(q_new, vocal_summary=vocal_summary, extended_refs=extended_refs, | |
| titles_summary=titles_summary, full_audio=full_audio) | |
| if full_transcript: | |
| save_full_transcript(q_new, result) | |
| elif tab_main == "🎤 Voice": | |
| st.subheader("🎤 Voice Input") | |
| user_text = st.text_area("💬 Message:", height=100) | |
| user_text = user_text.strip().replace('\n', ' ') | |
| if st.button("📨 Send"): | |
| process_with_gpt(user_text) | |
| st.subheader("📜 Chat History") | |
| t1,t2=st.tabs(["Claude History","GPT-4o History"]) | |
| with t1: | |
| for c in st.session_state.chat_history: | |
| st.write("**You:**", c["user"]) | |
| st.write("**Claude:**", c["claude"]) | |
| with t2: | |
| for m in st.session_state.messages: | |
| with st.chat_message(m["role"]): | |
| st.markdown(m["content"]) | |
| elif tab_main == "📸 Media": | |
| st.header("📸 Images & 🎥 Videos") | |
| tabs = st.tabs(["🖼 Images", "🎥 Video"]) | |
| with tabs[0]: | |
| imgs = glob.glob("*.png")+glob.glob("*.jpg") | |
| if imgs: | |
| c = st.slider("Cols",1,5,3) | |
| cols = st.columns(c) | |
| for i,f in enumerate(imgs): | |
| with cols[i%c]: | |
| st.image(Image.open(f),use_container_width=True) | |
| if st.button(f"👀 Analyze {os.path.basename(f)}", key=f"analyze_{f}"): | |
| a = process_image(f,"Describe this image.") | |
| st.markdown(a) | |
| else: | |
| st.write("No images found.") | |
| with tabs[1]: | |
| vids = glob.glob("*.mp4") | |
| if vids: | |
| for v in vids: | |
| with st.expander(f"🎥 {os.path.basename(v)}"): | |
| st.video(v) | |
| if st.button(f"Analyze {os.path.basename(v)}", key=f"analyze_{v}"): | |
| a = process_video_with_gpt(v,"Describe video.") | |
| st.markdown(a) | |
| else: | |
| st.write("No videos found.") | |
| elif tab_main == "📝 Editor": | |
| if getattr(st.session_state,'current_file',None): | |
| st.subheader(f"Editing: {st.session_state.current_file}") | |
| new_text = st.text_area("✏️ Content:", st.session_state.file_content, height=300) | |
| if st.button("💾 Save"): | |
| with open(st.session_state.current_file,'w',encoding='utf-8') as f: | |
| f.write(new_text) | |
| st.success("Updated!") | |
| st.session_state.should_rerun = True | |
| else: | |
| st.write("Select a file from the sidebar to edit.") | |
| # Load and display files in the sidebar | |
| groups_sorted = load_files_for_sidebar() | |
| display_file_manager_sidebar(groups_sorted) | |
| if st.session_state.viewing_prefix and any(st.session_state.viewing_prefix == group for group, _ in groups_sorted): | |
| st.write("---") | |
| st.write(f"**Viewing Group:** {st.session_state.viewing_prefix}") | |
| for group_name, files in groups_sorted: | |
| if group_name == st.session_state.viewing_prefix: | |
| for f in files: | |
| fname = os.path.basename(f) | |
| ext = os.path.splitext(fname)[1].lower().strip('.') | |
| st.write(f"### {fname}") | |
| if ext == "md": | |
| content = open(f,'r',encoding='utf-8').read() | |
| st.markdown(content) | |
| elif ext == "mp3": | |
| st.audio(f) | |
| elif ext == "wav": | |
| st.audio(f) # 🆕 Handle WAV files | |
| else: | |
| st.markdown(get_download_link(f), unsafe_allow_html=True) | |
| break | |
| if st.button("❌ Close"): | |
| st.session_state.viewing_prefix = None | |
| markdownPapers = """ | |
| # Levels of AGI | |
| ## 1. Performance (rows) x Generality (columns) | |
| - **Narrow** | |
| - *clearly scoped or set of tasks* | |
| - **General** | |
| - *wide range of non-physical tasks, including metacognitive abilities like learning new skills* | |
| ## 2. Levels of AGI | |
| ### 2.1 Level 0: No AI | |
| - **Narrow Non-AI** | |
| - Calculator software; compiler | |
| - **General Non-AI** | |
| - Human-in-the-loop computing, e.g., Amazon Mechanical Turk | |
| ### 2.2 Level 1: Emerging | |
| *equal to or somewhat better than an unskilled human* | |
| - **Emerging Narrow AI** | |
| - GOFAI; simple rule-based systems | |
| - Example: SHRDLU | |
| - *Reference:* Winograd, T. (1971). **Procedures as a Representation for Data in a Computer Program for Understanding Natural Language**. MIT AI Technical Report. [Link](https://dspace.mit.edu/handle/1721.1/7095) | |
| - **Emerging AGI** | |
| - ChatGPT (OpenAI, 2023) | |
| - Bard (Anil et al., 2023) | |
| - *Reference:* Anil, R., et al. (2023). **Bard: Google’s AI Chatbot**. [arXiv](https://arxiv.org/abs/2303.12712) | |
| - LLaMA 2 (Touvron et al., 2023) | |
| - *Reference:* Touvron, H., et al. (2023). **LLaMA 2: Open and Efficient Foundation Language Models**. [arXiv](https://arxiv.org/abs/2307.09288) | |
| ### 2.3 Level 2: Competent | |
| *at least 50th percentile of skilled adults* | |
| - **Competent Narrow AI** | |
| - Toxicity detectors such as Jigsaw | |
| - *Reference:* Das, S., et al. (2022). **Toxicity Detection at Scale with Jigsaw**. [arXiv](https://arxiv.org/abs/2204.06905) | |
| - Smart Speakers (Apple, Amazon, Google) | |
| - VQA systems (PaLI) | |
| - *Reference:* Chen, T., et al. (2023). **PaLI: Pathways Language and Image model**. [arXiv](https://arxiv.org/abs/2301.01298) | |
| - Watson (IBM) | |
| - SOTA LLMs for subsets of tasks | |
| - **Competent AGI** | |
| - Not yet achieved | |
| ### 2.4 Level 3: Expert | |
| *at least 90th percentile of skilled adults* | |
| - **Expert Narrow AI** | |
| - Spelling & grammar checkers (Grammarly, 2023) | |
| - Generative image models | |
| - Example: Imagen | |
| - *Reference:* Saharia, C., et al. (2022). **Imagen: Photorealistic Text-to-Image Diffusion Models**. [arXiv](https://arxiv.org/abs/2205.11487) | |
| - Example: DALL·E 2 | |
| - *Reference:* Ramesh, A., et al. (2022). **Hierarchical Text-Conditional Image Generation with CLIP Latents**. [arXiv](https://arxiv.org/abs/2204.06125) | |
| - **Expert AGI** | |
| - Not yet achieved | |
| ### 2.5 Level 4: Virtuoso | |
| *at least 99th percentile of skilled adults* | |
| - **Virtuoso Narrow AI** | |
| - Deep Blue | |
| - *Reference:* Campbell, M., et al. (2002). **Deep Blue**. IBM Journal of Research and Development. [Link](https://research.ibm.com/publications/deep-blue) | |
| - AlphaGo | |
| - *Reference:* Silver, D., et al. (2016, 2017). **Mastering the Game of Go with Deep Neural Networks and Tree Search**. [Nature](https://www.nature.com/articles/nature16961) | |
| - **Virtuoso AGI** | |
| - Not yet achieved | |
| ### 2.6 Level 5: Superhuman | |
| *outperforms 100% of humans* | |
| - **Superhuman Narrow AI** | |
| - AlphaFold | |
| - *Reference:* Jumper, J., et al. (2021). **Highly Accurate Protein Structure Prediction with AlphaFold**. [Nature](https://www.nature.com/articles/s41586-021-03819-2) | |
| - AlphaZero | |
| - *Reference:* Silver, D., et al. (2018). **A General Reinforcement Learning Algorithm that Masters Chess, Shogi, and Go through Self-Play**. [Science](https://www.science.org/doi/10.1126/science.aar6404) | |
| - StockFish | |
| - *Reference:* Stockfish (2023). **Stockfish Chess Engine**. [Website](https://stockfishchess.org) | |
| - **Artificial Superintelligence (ASI)** | |
| - Not yet achieved | |
| # 🧬 Innovative Architecture of AlphaFold2: A Hybrid System | |
| ## 1. 🔢 Input Sequence | |
| - The process starts with an **input sequence** (protein sequence). | |
| ## 2. 🗄️ Database Searches | |
| - **Genetic database search** 🔍 | |
| - Searches genetic databases to retrieve related sequences. | |
| - **Structure database search** 🔍 | |
| - Searches structural databases for template structures. | |
| - **Pairing** 🤝 | |
| - Aligns sequences and structures for further analysis. | |
| ## 3. 🧩 MSA (Multiple Sequence Alignment) | |
| - **MSA representation** 📊 (r,c) | |
| - Representation of multiple aligned sequences used as input. | |
| ## 4. 📑 Templates | |
| - Template structures are paired to assist the model. | |
| ## 5. 🔄 Evoformer (48 blocks) | |
| - A **deep learning module** that refines representations: | |
| - **MSA representation** 🧱 | |
| - **Pair representation** 🧱 (r,c) | |
| ## 6. 🧱 Structure Module (8 blocks) | |
| - Converts the representations into: | |
| - **Single representation** (r,c) | |
| - **Pair representation** (r,c) | |
| ## 7. 🧬 3D Structure Prediction | |
| - The structure module predicts the **3D protein structure**. | |
| - **Confidence levels**: | |
| - 🔵 *High confidence* | |
| - 🟠 *Low confidence* | |
| ## 8. ♻️ Recycling (Three Times) | |
| - The model **recycles** its output up to three times to refine the prediction. | |
| ## 9. 📚 Reference | |
| **Jumper, J., et al. (2021).** Highly Accurate Protein Structure Prediction with AlphaFold. *Nature.* | |
| 🔗 [Nature Publication Link](https://www.nature.com/articles/s41586-021-03819-2) | |
| """ | |
| st.sidebar.markdown(markdownPapers) | |
| if st.session_state.should_rerun: | |
| st.session_state.should_rerun = False | |
| st.rerun() | |
| if __name__=="__main__": | |
| main() | |