Spaces:
Sleeping
Sleeping
| import streamlit as st | |
| import anthropic, openai, base64, cv2, glob, json, math, os, pytz, random, re, requests, textract, time, zipfile | |
| import plotly.graph_objects as go | |
| import streamlit.components.v1 as components | |
| from datetime import datetime | |
| from audio_recorder_streamlit import audio_recorder | |
| from bs4 import BeautifulSoup | |
| from collections import defaultdict, deque, Counter | |
| from dotenv import load_dotenv | |
| from gradio_client import Client | |
| from huggingface_hub import InferenceClient | |
| from io import BytesIO | |
| from PIL import Image | |
| from PyPDF2 import PdfReader | |
| from urllib.parse import quote | |
| from xml.etree import ElementTree as ET | |
| from openai import OpenAI | |
| import extra_streamlit_components as stx | |
| from streamlit.runtime.scriptrunner import get_script_run_ctx | |
| import asyncio | |
| import edge_tts | |
| from streamlit_marquee import streamlit_marquee | |
| # βββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
| # 1. CORE CONFIGURATION & SETUP | |
| # βββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
| st.set_page_config( | |
| page_title="π²TalkingAIResearcherπ", | |
| page_icon="π²π", | |
| layout="wide", | |
| initial_sidebar_state="auto", | |
| menu_items={ | |
| 'Get Help': 'https://huggingface.co/awacke1', | |
| 'Report a bug': 'https://huggingface.co/spaces/awacke1', | |
| 'About': "π²TalkingAIResearcherπ" | |
| } | |
| ) | |
| load_dotenv() | |
| # Available English voices for Edge TTS | |
| EDGE_TTS_VOICES = [ | |
| "en-US-AriaNeural", | |
| "en-US-GuyNeural", | |
| "en-US-JennyNeural", | |
| "en-GB-SoniaNeural", | |
| "en-GB-RyanNeural", | |
| "en-AU-NatashaNeural", | |
| "en-AU-WilliamNeural", | |
| "en-CA-ClaraNeural", | |
| "en-CA-LiamNeural" | |
| ] | |
| # Session state variables | |
| if 'marquee_settings' not in st.session_state: | |
| st.session_state['marquee_settings'] = { | |
| "background": "#1E1E1E", | |
| "color": "#FFFFFF", | |
| "font-size": "14px", | |
| "animationDuration": "20s", | |
| "width": "100%", | |
| "lineHeight": "35px" | |
| } | |
| if 'tts_voice' not in st.session_state: | |
| st.session_state['tts_voice'] = EDGE_TTS_VOICES[0] | |
| if 'audio_format' not in st.session_state: | |
| st.session_state['audio_format'] = 'mp3' | |
| if 'transcript_history' not in st.session_state: | |
| st.session_state['transcript_history'] = [] | |
| if 'chat_history' not in st.session_state: | |
| st.session_state['chat_history'] = [] | |
| if 'openai_model' not in st.session_state: | |
| st.session_state['openai_model'] = "gpt-4o-2024-05-13" | |
| if 'messages' not in st.session_state: | |
| st.session_state['messages'] = [] | |
| if 'last_voice_input' not in st.session_state: | |
| st.session_state['last_voice_input'] = "" | |
| if 'editing_file' not in st.session_state: | |
| st.session_state['editing_file'] = None | |
| if 'edit_new_name' not in st.session_state: | |
| st.session_state['edit_new_name'] = "" | |
| if 'edit_new_content' not in st.session_state: | |
| st.session_state['edit_new_content'] = "" | |
| if 'viewing_prefix' not in st.session_state: | |
| st.session_state['viewing_prefix'] = None | |
| if 'should_rerun' not in st.session_state: | |
| st.session_state['should_rerun'] = False | |
| if 'old_val' not in st.session_state: | |
| st.session_state['old_val'] = None | |
| if 'last_query' not in st.session_state: | |
| st.session_state['last_query'] = "" | |
| if 'marquee_content' not in st.session_state: | |
| st.session_state['marquee_content'] = "π Welcome to TalkingAIResearcher | π€ Your Research Assistant" | |
| # API Keys | |
| openai_api_key = os.getenv('OPENAI_API_KEY', "") | |
| anthropic_key = os.getenv('ANTHROPIC_API_KEY_3', "") | |
| xai_key = os.getenv('xai',"") | |
| if 'OPENAI_API_KEY' in st.secrets: | |
| openai_api_key = st.secrets['OPENAI_API_KEY'] | |
| if 'ANTHROPIC_API_KEY' in st.secrets: | |
| anthropic_key = st.secrets["ANTHROPIC_API_KEY"] | |
| openai.api_key = openai_api_key | |
| openai_client = OpenAI(api_key=openai.api_key, organization=os.getenv('OPENAI_ORG_ID')) | |
| HF_KEY = os.getenv('HF_KEY') | |
| API_URL = os.getenv('API_URL') | |
| # Helper constants | |
| FILE_EMOJIS = { | |
| "md": "π", | |
| "mp3": "π΅", | |
| "wav": "π" | |
| } | |
| # βββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
| # 2. HELPER FUNCTIONS | |
| # βββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
| def get_central_time(): | |
| """Get current time in US Central timezone.""" | |
| central = pytz.timezone('US/Central') | |
| return datetime.now(central) | |
| def format_timestamp_prefix(): | |
| """Generate timestamp prefix in format MM_dd_yy_hh_mm_AM/PM.""" | |
| ct = get_central_time() | |
| return ct.strftime("%m_%d_%y_%I_%M_%p") | |
| def initialize_marquee_settings(): | |
| if 'marquee_settings' not in st.session_state: | |
| st.session_state['marquee_settings'] = { | |
| "background": "#1E1E1E", | |
| "color": "#FFFFFF", | |
| "font-size": "14px", | |
| "animationDuration": "20s", | |
| "width": "100%", | |
| "lineHeight": "35px" | |
| } | |
| def get_marquee_settings(): | |
| initialize_marquee_settings() | |
| return st.session_state['marquee_settings'] | |
| def update_marquee_settings_ui(): | |
| """Add color pickers & sliders for marquee config in sidebar.""" | |
| st.sidebar.markdown("### π― Marquee Settings") | |
| cols = st.sidebar.columns(2) | |
| with cols[0]: | |
| bg_color = st.color_picker("π¨ Background", | |
| st.session_state['marquee_settings']["background"], | |
| key="bg_color_picker") | |
| text_color = st.color_picker("βοΈ Text", | |
| st.session_state['marquee_settings']["color"], | |
| key="text_color_picker") | |
| with cols[1]: | |
| font_size = st.slider("π Size", 10, 24, 14, key="font_size_slider") | |
| duration = st.slider("β±οΈ Speed", 1, 20, 20, key="duration_slider") | |
| st.session_state['marquee_settings'].update({ | |
| "background": bg_color, | |
| "color": text_color, | |
| "font-size": f"{font_size}px", | |
| "animationDuration": f"{duration}s" | |
| }) | |
| def display_marquee(text, settings, key_suffix=""): | |
| """Show marquee text with style from settings.""" | |
| truncated_text = text[:280] + "..." if len(text) > 280 else text | |
| streamlit_marquee( | |
| content=truncated_text, | |
| **settings, | |
| key=f"marquee_{key_suffix}" | |
| ) | |
| st.write("") | |
| def get_high_info_terms(text: str, top_n=10) -> list: | |
| """Extract top_n freq words or bigrams (excluding stopwords).""" | |
| stop_words = set(['the', 'a', 'an', 'and', 'or', 'but', 'in', 'on', 'at', 'to', 'for', 'of', 'with']) | |
| words = re.findall(r'\b\w+(?:-\w+)*\b', text.lower()) | |
| bi_grams = [' '.join(pair) for pair in zip(words, words[1:])] | |
| combined = words + bi_grams | |
| filtered = [term for term in combined if term not in stop_words and len(term.split()) <= 2] | |
| counter = Counter(filtered) | |
| return [term for term, freq in counter.most_common(top_n)] | |
| def clean_text_for_filename(text: str) -> str: | |
| """Remove special chars, short words, etc. for filenames.""" | |
| text = text.lower() | |
| text = re.sub(r'[^\w\s-]', '', text) | |
| words = text.split() | |
| # remove short or unhelpful words | |
| stop_short = set(['the', 'and', 'for', 'with', 'this', 'that', 'ai', 'library']) | |
| filtered = [w for w in words if len(w) > 3 and w not in stop_short] | |
| return '_'.join(filtered)[:200] | |
| def generate_filename(prompt, response, file_type="md", max_length=200): | |
| """ | |
| Generate a shortened filename by: | |
| 1) extracting high-info terms, | |
| 2) snippet from prompt+response, | |
| 3) remove duplicates, | |
| 4) truncate if needed. | |
| """ | |
| prefix = format_timestamp_prefix() + "_" | |
| combined_text = (prompt + " " + response)[:200] | |
| info_terms = get_high_info_terms(combined_text, top_n=5) | |
| snippet = (prompt[:40] + " " + response[:40]).strip() | |
| snippet_cleaned = clean_text_for_filename(snippet) | |
| # remove duplicates | |
| name_parts = info_terms + [snippet_cleaned] | |
| seen = set() | |
| unique_parts = [] | |
| for part in name_parts: | |
| if part not in seen: | |
| seen.add(part) | |
| unique_parts.append(part) | |
| full_name = '_'.join(unique_parts).strip('_') | |
| leftover_chars = max_length - len(prefix) - len(file_type) - 1 | |
| if len(full_name) > leftover_chars: | |
| full_name = full_name[:leftover_chars] | |
| return f"{prefix}{full_name}.{file_type}" | |
| def create_file(prompt, response, file_type="md"): | |
| """Create a text file from prompt + response with sanitized filename.""" | |
| filename = generate_filename(prompt.strip(), response.strip(), file_type) | |
| with open(filename, 'w', encoding='utf-8') as f: | |
| f.write(prompt + "\n\n" + response) | |
| return filename | |
| def get_download_link(file, file_type="zip"): | |
| """ | |
| Convert a file to base64 and return an HTML link for download. | |
| """ | |
| with open(file, "rb") as f: | |
| b64 = base64.b64encode(f.read()).decode() | |
| if file_type == "zip": | |
| return f'<a href="data:application/zip;base64,{b64}" download="{os.path.basename(file)}">π Download {os.path.basename(file)}</a>' | |
| elif file_type == "mp3": | |
| return f'<a href="data:audio/mpeg;base64,{b64}" download="{os.path.basename(file)}">π΅ Download {os.path.basename(file)}</a>' | |
| elif file_type == "wav": | |
| return f'<a href="data:audio/wav;base64,{b64}" download="{os.path.basename(file)}">π Download {os.path.basename(file)}</a>' | |
| elif file_type == "md": | |
| return f'<a href="data:text/markdown;base64,{b64}" download="{os.path.basename(file)}">π Download {os.path.basename(file)}</a>' | |
| else: | |
| return f'<a href="data:application/octet-stream;base64,{b64}" download="{os.path.basename(file)}">Download {os.path.basename(file)}</a>' | |
| def clean_for_speech(text: str) -> str: | |
| """Clean up text for TTS output.""" | |
| text = text.replace("\n", " ") | |
| text = text.replace("</s>", " ") | |
| text = text.replace("#", "") | |
| text = re.sub(r"\(https?:\/\/[^\)]+\)", "", text) | |
| text = re.sub(r"\s+", " ", text).strip() | |
| return text | |
| async def edge_tts_generate_audio(text, voice="en-US-AriaNeural", rate=0, pitch=0, file_format="mp3"): | |
| """Async TTS generation with edge-tts library.""" | |
| text = clean_for_speech(text) | |
| if not text.strip(): | |
| return None | |
| rate_str = f"{rate:+d}%" | |
| pitch_str = f"{pitch:+d}Hz" | |
| communicate = edge_tts.Communicate(text, voice, rate=rate_str, pitch=pitch_str) | |
| out_fn = generate_filename(text, text, file_type=file_format) | |
| await communicate.save(out_fn) | |
| return out_fn | |
| def speak_with_edge_tts(text, voice="en-US-AriaNeural", rate=0, pitch=0, file_format="mp3"): | |
| """Wrapper for the async TTS generate call.""" | |
| return asyncio.run(edge_tts_generate_audio(text, voice, rate, pitch, file_format)) | |
| def play_and_download_audio(file_path, file_type="mp3"): | |
| """Streamlit audio + a quick download link.""" | |
| if file_path and os.path.exists(file_path): | |
| st.audio(file_path) | |
| dl_link = get_download_link(file_path, file_type=file_type) | |
| st.markdown(dl_link, unsafe_allow_html=True) | |
| def save_qa_with_audio(question, answer, voice=None): | |
| """Save Q&A to markdown and also generate audio.""" | |
| if not voice: | |
| voice = st.session_state['tts_voice'] | |
| combined_text = f"# Question\n{question}\n\n# Answer\n{answer}" | |
| md_file = create_file(question, answer, "md") | |
| audio_text = f"{question}\n\nAnswer: {answer}" | |
| audio_file = speak_with_edge_tts( | |
| audio_text, | |
| voice=voice, | |
| file_format=st.session_state['audio_format'] | |
| ) | |
| return md_file, audio_file | |
| # βββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
| # 3. PAPER PARSING & DISPLAY | |
| # βββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
| def parse_arxiv_refs(ref_text: str): | |
| """ | |
| Given a multi-line markdown with arxiv references, parse them into | |
| a list of dicts: {date, title, url, authors, summary, ...}. | |
| """ | |
| if not ref_text: | |
| return [] | |
| results = [] | |
| current_paper = {} | |
| lines = ref_text.split('\n') | |
| for i, line in enumerate(lines): | |
| if line.count('|') == 2: | |
| # Found a new paper line | |
| if current_paper: | |
| results.append(current_paper) | |
| if len(results) >= 20: | |
| break | |
| try: | |
| header_parts = line.strip('* ').split('|') | |
| date = header_parts[0].strip() | |
| title = header_parts[1].strip() | |
| url_match = re.search(r'(https://arxiv.org/\S+)', line) | |
| url = url_match.group(1) if url_match else f"paper_{len(results)}" | |
| current_paper = { | |
| 'date': date, | |
| 'title': title, | |
| 'url': url, | |
| 'authors': '', | |
| 'summary': '', | |
| 'full_audio': None, | |
| 'download_base64': '', | |
| } | |
| except Exception as e: | |
| st.warning(f"Error parsing paper header: {str(e)}") | |
| current_paper = {} | |
| continue | |
| elif current_paper: | |
| # If authors not set, fill it; otherwise, fill summary | |
| if not current_paper['authors']: | |
| current_paper['authors'] = line.strip('* ') | |
| else: | |
| if current_paper['summary']: | |
| current_paper['summary'] += ' ' + line.strip() | |
| else: | |
| current_paper['summary'] = line.strip() | |
| if current_paper: | |
| results.append(current_paper) | |
| return results[:20] | |
| def create_paper_links_md(papers): | |
| """Creates a minimal .md content linking to each paper's arxiv URL.""" | |
| lines = ["# Paper Links\n"] | |
| for i, p in enumerate(papers, start=1): | |
| lines.append(f"{i}. **{p['title']}** β [Arxiv]({p['url']})") | |
| return "\n".join(lines) | |
| def create_paper_audio_files(papers, input_question): | |
| """ | |
| For each paper, generate TTS audio summary, store the path in `paper['full_audio']`, | |
| and also store a base64 link for stable downloading. | |
| """ | |
| for paper in papers: | |
| try: | |
| audio_text = f"{paper['title']} by {paper['authors']}. {paper['summary']}" | |
| audio_text = clean_for_speech(audio_text) | |
| file_format = st.session_state['audio_format'] | |
| audio_file = speak_with_edge_tts( | |
| audio_text, | |
| voice=st.session_state['tts_voice'], | |
| file_format=file_format | |
| ) | |
| paper['full_audio'] = audio_file | |
| if audio_file: | |
| with open(audio_file, "rb") as af: | |
| b64_data = base64.b64encode(af.read()).decode() | |
| download_filename = os.path.basename(audio_file) | |
| mime_type = "mpeg" if file_format == "mp3" else "wav" | |
| paper['download_base64'] = ( | |
| f'<a href="data:audio/{mime_type};base64,{b64_data}" ' | |
| f'download="{download_filename}">π΅ Download {download_filename}</a>' | |
| ) | |
| except Exception as e: | |
| st.warning(f"Error processing paper {paper['title']}: {str(e)}") | |
| paper['full_audio'] = None | |
| paper['download_base64'] = '' | |
| def display_papers(papers, marquee_settings): | |
| """Display paper info in the main area with marquee + expanders + audio.""" | |
| st.write("## Research Papers") | |
| for i, paper in enumerate(papers, start=1): | |
| marquee_text = f"π {paper['title']} | π€ {paper['authors'][:120]} | π {paper['summary'][:200]}" | |
| display_marquee(marquee_text, marquee_settings, key_suffix=f"paper_{i}") | |
| with st.expander(f"{i}. π {paper['title']}", expanded=True): | |
| st.markdown(f"**{paper['date']} | {paper['title']}** β [Arxiv Link]({paper['url']})") | |
| st.markdown(f"*Authors:* {paper['authors']}") | |
| st.markdown(paper['summary']) | |
| if paper.get('full_audio'): | |
| st.write("π Paper Audio") | |
| st.audio(paper['full_audio']) | |
| if paper['download_base64']: | |
| st.markdown(paper['download_base64'], unsafe_allow_html=True) | |
| def display_papers_in_sidebar(papers): | |
| """Mirrors the paper listing in the sidebar with expanders, audio, etc.""" | |
| st.sidebar.title("πΆ Papers & Audio") | |
| for i, paper in enumerate(papers, start=1): | |
| with st.sidebar.expander(f"{i}. {paper['title']}"): | |
| st.markdown(f"**Arxiv:** [Link]({paper['url']})") | |
| if paper['full_audio']: | |
| st.audio(paper['full_audio']) | |
| if paper['download_base64']: | |
| st.markdown(paper['download_base64'], unsafe_allow_html=True) | |
| st.markdown(f"**Authors:** {paper['authors']}") | |
| if paper['summary']: | |
| st.markdown(f"**Summary:** {paper['summary'][:300]}...") | |
| # βββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
| # 4. ZIP FUNCTION | |
| # βββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
| def create_zip_of_files(md_files, mp3_files, wav_files, input_question): | |
| """ | |
| Zip up all relevant files, limiting the final zip name to ~20 chars | |
| to avoid overly long base64 strings. | |
| """ | |
| md_files = [f for f in md_files if os.path.basename(f).lower() != 'readme.md'] | |
| all_files = md_files + mp3_files + wav_files | |
| if not all_files: | |
| return None | |
| all_content = [] | |
| for f in all_files: | |
| if f.endswith('.md'): | |
| with open(f, 'r', encoding='utf-8') as file: | |
| all_content.append(file.read()) | |
| elif f.endswith('.mp3') or f.endswith('.wav'): | |
| basename = os.path.splitext(os.path.basename(f))[0] | |
| words = basename.replace('_', ' ') | |
| all_content.append(words) | |
| all_content.append(input_question) | |
| combined_content = " ".join(all_content) | |
| info_terms = get_high_info_terms(combined_content, top_n=10) | |
| timestamp = format_timestamp_prefix() | |
| name_text = '-'.join(term for term in info_terms[:5]) | |
| short_zip_name = (timestamp + "_" + name_text)[:20] + ".zip" | |
| with zipfile.ZipFile(short_zip_name, 'w') as z: | |
| for f in all_files: | |
| z.write(f) | |
| return short_zip_name | |
| # βββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
| # 5. MAIN LOGIC: AI LOOKUP & VOICE INPUT | |
| # βββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
| def perform_ai_lookup(q, vocal_summary=True, extended_refs=False, | |
| titles_summary=True, full_audio=False): | |
| """Main routine that uses Anthropic (Claude) + Gradio ArXiv RAG pipeline.""" | |
| start = time.time() | |
| ai_constitution = """ | |
| You are a talented AI coder and songwriter... | |
| """ | |
| # --- 1) Claude API | |
| client = anthropic.Anthropic(api_key=anthropic_key) | |
| user_input = q | |
| response = client.messages.create( | |
| model="claude-3-sonnet-20240229", | |
| max_tokens=1000, | |
| messages=[ | |
| {"role": "user", "content": user_input} | |
| ]) | |
| st.write("Claude's reply π§ :") | |
| st.markdown(response.content[0].text) | |
| # Save & produce audio | |
| result = response.content[0].text | |
| create_file(q, result) | |
| md_file, audio_file = save_qa_with_audio(q, result) | |
| st.subheader("π Main Response Audio") | |
| play_and_download_audio(audio_file, st.session_state['audio_format']) | |
| # --- 2) Arxiv RAG | |
| st.write("Arxiv's AI this Evening is Mixtral 8x7B...") | |
| client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern") | |
| refs = client.predict( | |
| q, | |
| 20, | |
| "Semantic Search", | |
| "mistralai/Mixtral-8x7B-Instruct-v0.1", | |
| api_name="/update_with_rag_md" | |
| )[0] | |
| r2 = client.predict( | |
| q, | |
| "mistralai/Mixtral-8x7B-Instruct-v0.1", | |
| True, | |
| api_name="/ask_llm" | |
| ) | |
| result = f"### π {q}\n\n{r2}\n\n{refs}" | |
| md_file, audio_file = save_qa_with_audio(q, result) | |
| st.subheader("π Main Response Audio") | |
| play_and_download_audio(audio_file, st.session_state['audio_format']) | |
| # --- 3) Parse + handle papers | |
| papers = parse_arxiv_refs(refs) | |
| if papers: | |
| # Create minimal links page first | |
| paper_links = create_paper_links_md(papers) | |
| links_file = create_file(q, paper_links, "md") | |
| st.markdown(paper_links) | |
| # Then create audio for each paper | |
| create_paper_audio_files(papers, input_question=q) | |
| display_papers(papers, get_marquee_settings()) | |
| display_papers_in_sidebar(papers) | |
| else: | |
| st.warning("No papers found in the response.") | |
| elapsed = time.time() - start | |
| st.write(f"**Total Elapsed:** {elapsed:.2f} s") | |
| return result | |
| def process_voice_input(text): | |
| """When user sends voice query, we run the AI lookup + Q&A with audio.""" | |
| if not text: | |
| return | |
| st.subheader("π Search Results") | |
| result = perform_ai_lookup( | |
| text, | |
| vocal_summary=True, | |
| extended_refs=False, | |
| titles_summary=True, | |
| full_audio=True | |
| ) | |
| md_file, audio_file = save_qa_with_audio(text, result) | |
| st.subheader("π Generated Files") | |
| st.write(f"Markdown: {md_file}") | |
| st.write(f"Audio: {audio_file}") | |
| play_and_download_audio(audio_file, st.session_state['audio_format']) | |
| # βββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
| # 6. FILE HISTORY SIDEBAR | |
| # βββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
| def display_file_history_in_sidebar(): | |
| """ | |
| Shows a history of each local .md, .mp3, .wav file in descending | |
| order of modification time, with quick icons and optional download links. | |
| """ | |
| st.sidebar.markdown("---") | |
| st.sidebar.markdown("### π File History") | |
| # Gather all files | |
| md_files = glob.glob("*.md") | |
| mp3_files = glob.glob("*.mp3") | |
| wav_files = glob.glob("*.wav") | |
| all_files = md_files + mp3_files + wav_files | |
| if not all_files: | |
| st.sidebar.write("No files found.") | |
| return | |
| # πβ¬οΈ Sidebar delete all and zip all download | |
| col1, col4 = st.sidebar.columns(2) | |
| with col1: | |
| if st.button("π Delete All"): | |
| for f in all_md: | |
| os.remove(f) | |
| for f in all_mp3: | |
| os.remove(f) | |
| for f in all_wav: | |
| os.remove(f) | |
| st.session_state.should_rerun = True | |
| with col4: | |
| if st.button("β¬οΈ Zip All"): | |
| zip_name = create_zip_of_files(all_md, all_mp3, all_wav, st.session_state.get('last_query', '')) | |
| if zip_name: | |
| st.sidebar.markdown(get_download_link(zip_name, "zip"), unsafe_allow_html=True) | |
| # Sort newest first | |
| all_files = sorted(all_files, key=os.path.getmtime, reverse=True) | |
| for f in all_files: | |
| fname = os.path.basename(f) | |
| ext = os.path.splitext(fname)[1].lower().strip('.') | |
| emoji = FILE_EMOJIS.get(ext, 'π¦') | |
| time_str = datetime.fromtimestamp(os.path.getmtime(f)).strftime("%Y-%m-%d %H:%M:%S") | |
| with st.sidebar.expander(f"{emoji} {fname}"): | |
| st.write(f"**Modified:** {time_str}") | |
| if ext == "md": | |
| with open(f, "r", encoding="utf-8") as file_in: | |
| snippet = file_in.read(200).replace("\n", " ") | |
| if len(snippet) == 200: | |
| snippet += "..." | |
| st.write(snippet) | |
| st.markdown(get_download_link(f, file_type="md"), unsafe_allow_html=True) | |
| elif ext in ["mp3","wav"]: | |
| st.audio(f) | |
| st.markdown(get_download_link(f, file_type=ext), unsafe_allow_html=True) | |
| else: | |
| st.markdown(get_download_link(f), unsafe_allow_html=True) | |
| # βββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
| # 7. MAIN APP | |
| # βββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
| def main(): | |
| # 1) Setup marquee UI in the sidebar | |
| update_marquee_settings_ui() | |
| marquee_settings = get_marquee_settings() | |
| # 2) Display the marquee welcome | |
| display_marquee(st.session_state['marquee_content'], | |
| {**marquee_settings, "font-size": "28px", "lineHeight": "50px"}, | |
| key_suffix="welcome") | |
| # 3) Main action tabs | |
| tab_main = st.radio("Action:", ["π€ Voice", "πΈ Media", "π ArXiv", "π Editor"], | |
| horizontal=True) | |
| # Example custom component usage | |
| mycomponent = components.declare_component("mycomponent", path="mycomponent") | |
| val = mycomponent(my_input_value="Hello") | |
| if val: | |
| val_stripped = val.replace('\\n', ' ') | |
| edited_input = st.text_area("βοΈ Edit Input:", value=val_stripped, height=100) | |
| run_option = st.selectbox("Model:", ["Arxiv"]) | |
| col1, col2 = st.columns(2) | |
| with col1: | |
| autorun = st.checkbox("β AutoRun", value=True) | |
| with col2: | |
| full_audio = st.checkbox("πFullAudio", value=False) | |
| input_changed = (val != st.session_state.old_val) | |
| if autorun and input_changed: | |
| st.session_state.old_val = val | |
| st.session_state.last_query = edited_input | |
| perform_ai_lookup(edited_input, | |
| vocal_summary=True, | |
| extended_refs=False, | |
| titles_summary=True, | |
| full_audio=full_audio) | |
| else: | |
| if st.button("βΆ Run"): | |
| st.session_state.old_val = val | |
| st.session_state.last_query = edited_input | |
| perform_ai_lookup(edited_input, | |
| vocal_summary=True, | |
| extended_refs=False, | |
| titles_summary=True, | |
| full_audio=full_audio) | |
| # βββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
| # TAB: ArXiv | |
| # βββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
| if tab_main == "π ArXiv": | |
| st.subheader("π Query ArXiv") | |
| q = st.text_input("π Query:", key="arxiv_query") | |
| st.markdown("### π Options") | |
| vocal_summary = st.checkbox("πShortAudio", value=True, key="option_vocal_summary") | |
| extended_refs = st.checkbox("πLongRefs", value=False, key="option_extended_refs") | |
| titles_summary = st.checkbox("πTitlesOnly", value=True, key="option_titles_summary") | |
| full_audio = st.checkbox("πFullAudio", value=False, key="option_full_audio") | |
| full_transcript = st.checkbox("π§ΎFullTranscript", value=False, key="option_full_transcript") | |
| if q and st.button("πRun"): | |
| st.session_state.last_query = q | |
| result = perform_ai_lookup(q, vocal_summary=vocal_summary, extended_refs=extended_refs, | |
| titles_summary=titles_summary, full_audio=full_audio) | |
| if full_transcript: | |
| create_file(q, result, "md") | |
| # βββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
| # TAB: Voice | |
| # βββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
| elif tab_main == "π€ Voice": | |
| st.subheader("π€ Voice Input") | |
| st.markdown("### π€ Voice Settings") | |
| selected_voice = st.selectbox( | |
| "Select TTS Voice:", | |
| options=EDGE_TTS_VOICES, | |
| index=EDGE_TTS_VOICES.index(st.session_state['tts_voice']) | |
| ) | |
| st.markdown("### π Audio Format") | |
| selected_format = st.radio( | |
| "Choose Audio Format:", | |
| options=["MP3", "WAV"], | |
| index=0 | |
| ) | |
| # Update session state if voice/format changes | |
| if selected_voice != st.session_state['tts_voice']: | |
| st.session_state['tts_voice'] = selected_voice | |
| st.rerun() | |
| if selected_format.lower() != st.session_state['audio_format']: | |
| st.session_state['audio_format'] = selected_format.lower() | |
| st.rerun() | |
| # Input text | |
| user_text = st.text_area("π¬ Message:", height=100) | |
| user_text = user_text.strip().replace('\n', ' ') | |
| if st.button("π¨ Send"): | |
| process_voice_input(user_text) | |
| st.subheader("π Chat History") | |
| for c in st.session_state.chat_history: | |
| st.write("**You:**", c["user"]) | |
| st.write("**Response:**", c["claude"]) | |
| # βββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
| # TAB: Media | |
| # βββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
| elif tab_main == "πΈ Media": | |
| st.header("πΈ Media Gallery") | |
| # By default, show audio first | |
| tabs = st.tabs(["π΅ Audio", "πΌ Images", "π₯ Video"]) | |
| # AUDIO sub-tab | |
| with tabs[0]: | |
| st.subheader("π΅ Audio Files") | |
| audio_files = glob.glob("*.mp3") + glob.glob("*.wav") | |
| if audio_files: | |
| for a in audio_files: | |
| with st.expander(os.path.basename(a)): | |
| st.audio(a) | |
| ext = os.path.splitext(a)[1].replace('.', '') | |
| dl_link = get_download_link(a, file_type=ext) | |
| st.markdown(dl_link, unsafe_allow_html=True) | |
| else: | |
| st.write("No audio files found.") | |
| # IMAGES sub-tab | |
| with tabs[1]: | |
| st.subheader("πΌ Image Files") | |
| imgs = glob.glob("*.png") + glob.glob("*.jpg") + glob.glob("*.jpeg") | |
| if imgs: | |
| c = st.slider("Cols", 1, 5, 3, key="cols_images") | |
| cols = st.columns(c) | |
| for i, f in enumerate(imgs): | |
| with cols[i % c]: | |
| st.image(Image.open(f), use_container_width=True) | |
| else: | |
| st.write("No images found.") | |
| # VIDEO sub-tab | |
| with tabs[2]: | |
| st.subheader("π₯ Video Files") | |
| vids = glob.glob("*.mp4") + glob.glob("*.mov") + glob.glob("*.avi") | |
| if vids: | |
| for v in vids: | |
| with st.expander(os.path.basename(v)): | |
| st.video(v) | |
| else: | |
| st.write("No videos found.") | |
| # βββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
| # TAB: Editor | |
| # βββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
| elif tab_main == "π Editor": | |
| st.write("Select or create a file to edit. (Currently minimal demo)") | |
| # βββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
| # SIDEBAR: FILE HISTORY | |
| # βββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
| display_file_history_in_sidebar() | |
| # Some light CSS styling | |
| st.markdown(""" | |
| <style> | |
| .main { background: linear-gradient(to right, #1a1a1a, #2d2d2d); color: #fff; } | |
| .stMarkdown { font-family: 'Helvetica Neue', sans-serif; } | |
| .stButton>button { margin-right: 0.5rem; } | |
| </style> | |
| """, unsafe_allow_html=True) | |
| # Rerun if needed | |
| if st.session_state.should_rerun: | |
| st.session_state.should_rerun = False | |
| st.rerun() | |
| if __name__ == "__main__": | |
| main() | |