Spaces:
Sleeping
Sleeping
| import streamlit as st | |
| import anthropic, openai, base64, cv2, glob, json, math, os, pytz, random, re, requests, textract, time, zipfile | |
| import plotly.graph_objects as go | |
| import streamlit.components.v1 as components | |
| from datetime import datetime | |
| from audio_recorder_streamlit import audio_recorder | |
| from bs4 import BeautifulSoup | |
| from collections import defaultdict, deque, Counter | |
| from dotenv import load_dotenv | |
| from gradio_client import Client | |
| from huggingface_hub import InferenceClient | |
| from io import BytesIO | |
| from PIL import Image | |
| from PyPDF2 import PdfReader | |
| from urllib.parse import quote | |
| from xml.etree import ElementTree as ET | |
| from openai import OpenAI | |
| import extra_streamlit_components as stx | |
| from streamlit.runtime.scriptrunner import get_script_run_ctx | |
| import asyncio | |
| import edge_tts | |
| from streamlit_marquee import streamlit_marquee | |
| # 🎯 1. Core Configuration & Setup | |
| st.set_page_config( | |
| page_title="🚲TalkingAIResearcher🏆", | |
| page_icon="🚲🏆", | |
| layout="wide", | |
| initial_sidebar_state="auto", | |
| menu_items={ | |
| 'Get Help': 'https://huggingface.co/awacke1', | |
| 'Report a bug': 'https://huggingface.co/spaces/awacke1', | |
| 'About': "🚲TalkingAIResearcher🏆" | |
| } | |
| ) | |
| load_dotenv() | |
| # Add available English voices for Edge TTS | |
| EDGE_TTS_VOICES = [ | |
| "en-US-AriaNeural", | |
| "en-US-GuyNeural", | |
| "en-US-JennyNeural", | |
| "en-GB-SoniaNeural", | |
| "en-GB-RyanNeural", | |
| "en-AU-NatashaNeural", | |
| "en-AU-WilliamNeural", | |
| "en-CA-ClaraNeural", | |
| "en-CA-LiamNeural" | |
| ] | |
| # Initialize session state variables | |
| if 'marquee_settings' not in st.session_state: | |
| st.session_state['marquee_settings'] = { | |
| "background": "#1E1E1E", | |
| "color": "#FFFFFF", | |
| "font-size": "14px", | |
| "animationDuration": "10s", | |
| "width": "100%", | |
| "lineHeight": "35px" | |
| } | |
| if 'tts_voice' not in st.session_state: | |
| st.session_state['tts_voice'] = EDGE_TTS_VOICES[0] | |
| if 'audio_format' not in st.session_state: | |
| st.session_state['audio_format'] = 'mp3' | |
| if 'transcript_history' not in st.session_state: | |
| st.session_state['transcript_history'] = [] | |
| if 'chat_history' not in st.session_state: | |
| st.session_state['chat_history'] = [] | |
| if 'openai_model' not in st.session_state: | |
| st.session_state['openai_model'] = "gpt-4o-2024-05-13" | |
| if 'messages' not in st.session_state: | |
| st.session_state['messages'] = [] | |
| if 'last_voice_input' not in st.session_state: | |
| st.session_state['last_voice_input'] = "" | |
| if 'editing_file' not in st.session_state: | |
| st.session_state['editing_file'] = None | |
| if 'edit_new_name' not in st.session_state: | |
| st.session_state['edit_new_name'] = "" | |
| if 'edit_new_content' not in st.session_state: | |
| st.session_state['edit_new_content'] = "" | |
| if 'viewing_prefix' not in st.session_state: | |
| st.session_state['viewing_prefix'] = None | |
| if 'should_rerun' not in st.session_state: | |
| st.session_state['should_rerun'] = False | |
| if 'old_val' not in st.session_state: | |
| st.session_state['old_val'] = None | |
| if 'last_query' not in st.session_state: | |
| st.session_state['last_query'] = "" | |
| if 'marquee_content' not in st.session_state: | |
| st.session_state['marquee_content'] = "🚀 Welcome to TalkingAIResearcher | 🤖 Your Research Assistant" | |
| # 🔑 2. API Setup & Clients | |
| openai_api_key = os.getenv('OPENAI_API_KEY', "") | |
| anthropic_key = os.getenv('ANTHROPIC_API_KEY_3', "") | |
| xai_key = os.getenv('xai',"") | |
| if 'OPENAI_API_KEY' in st.secrets: | |
| openai_api_key = st.secrets['OPENAI_API_KEY'] | |
| if 'ANTHROPIC_API_KEY' in st.secrets: | |
| anthropic_key = st.secrets["ANTHROPIC_API_KEY"] | |
| openai.api_key = openai_api_key | |
| claude_client = anthropic.Anthropic(api_key=anthropic_key) | |
| openai_client = OpenAI(api_key=openai.api_key, organization=os.getenv('OPENAI_ORG_ID')) | |
| HF_KEY = os.getenv('HF_KEY') | |
| API_URL = os.getenv('API_URL') | |
| # Constants | |
| FILE_EMOJIS = { | |
| "md": "📝", | |
| "mp3": "🎵", | |
| "wav": "🔊" | |
| } | |
| def get_central_time(): | |
| """Get current time in US Central timezone""" | |
| central = pytz.timezone('US/Central') | |
| return datetime.now(central) | |
| def format_timestamp_prefix(): | |
| """Generate timestamp prefix in format MM_dd_yy_hh_mm_AM/PM""" | |
| ct = get_central_time() | |
| return ct.strftime("%m_%d_%y_%I_%M_%p") | |
| def initialize_marquee_settings(): | |
| """Initialize marquee settings in session state""" | |
| if 'marquee_settings' not in st.session_state: | |
| st.session_state['marquee_settings'] = { | |
| "background": "#1E1E1E", | |
| "color": "#FFFFFF", | |
| "font-size": "14px", | |
| "animationDuration": "10s", | |
| "width": "100%", | |
| "lineHeight": "35px" | |
| } | |
| def get_marquee_settings(): | |
| """Get or update marquee settings from session state""" | |
| initialize_marquee_settings() | |
| return st.session_state['marquee_settings'] | |
| def update_marquee_settings_ui(): | |
| """Update marquee settings via UI controls""" | |
| initialize_marquee_settings() | |
| st.sidebar.markdown("### 🎯 Marquee Settings") | |
| cols = st.sidebar.columns(2) | |
| with cols[0]: | |
| bg_color = st.color_picker("🎨 Background", | |
| st.session_state['marquee_settings']["background"], | |
| key="bg_color_picker") | |
| text_color = st.color_picker("✍️ Text", | |
| st.session_state['marquee_settings']["color"], | |
| key="text_color_picker") | |
| with cols[1]: | |
| font_size = st.slider("📏 Size", 10, 24, 14, key="font_size_slider") | |
| duration = st.slider("⏱️ Speed", 1, 20, 10, key="duration_slider") | |
| st.session_state['marquee_settings'].update({ | |
| "background": bg_color, | |
| "color": text_color, | |
| "font-size": f"{font_size}px", | |
| "animationDuration": f"{duration}s" | |
| }) | |
| def display_marquee(text, settings, key_suffix=""): | |
| """Display marquee with given text and settings""" | |
| truncated_text = text[:280] + "..." if len(text) > 280 else text | |
| streamlit_marquee( | |
| content=truncated_text, | |
| **settings, | |
| key=f"marquee_{key_suffix}" | |
| ) | |
| st.write("") | |
| def get_high_info_terms(text: str, top_n=10) -> list: | |
| stop_words = set(['the', 'a', 'an', 'and', 'or', 'but', 'in', 'on', 'at', 'to', 'for', 'of', 'with']) | |
| words = re.findall(r'\b\w+(?:-\w+)*\b', text.lower()) | |
| bi_grams = [' '.join(pair) for pair in zip(words, words[1:])] | |
| combined = words + bi_grams | |
| filtered = [term for term in combined if term not in stop_words and len(term.split()) <= 2] | |
| counter = Counter(filtered) | |
| return [term for term, freq in counter.most_common(top_n)] | |
| def clean_text_for_filename(text: str) -> str: | |
| text = text.lower() | |
| text = re.sub(r'[^\w\s-]', '', text) | |
| words = text.split() | |
| stop_short = set(['the', 'and', 'for', 'with', 'this', 'that']) | |
| filtered = [w for w in words if len(w) > 3 and w not in stop_short] | |
| return '_'.join(filtered)[:200] | |
| def generate_filename(prompt, response, file_type="md"): | |
| prefix = format_timestamp_prefix() + "_" | |
| combined = (prompt + " " + response).strip() | |
| info_terms = get_high_info_terms(combined, top_n=10) | |
| snippet = (prompt[:100] + " " + response[:100]).strip() | |
| snippet_cleaned = clean_text_for_filename(snippet) | |
| name_parts = info_terms + [snippet_cleaned] | |
| full_name = '_'.join(name_parts) | |
| if len(full_name) > 150: | |
| full_name = full_name[:150] | |
| return f"{prefix}{full_name}.{file_type}" | |
| def create_file(prompt, response, file_type="md"): | |
| filename = generate_filename(prompt.strip(), response.strip(), file_type) | |
| with open(filename, 'w', encoding='utf-8') as f: | |
| f.write(prompt + "\n\n" + response) | |
| return filename | |
| def get_download_link(file, file_type="zip"): | |
| with open(file, "rb") as f: | |
| b64 = base64.b64encode(f.read()).decode() | |
| if file_type == "zip": | |
| return f'<a href="data:application/zip;base64,{b64}" download="{os.path.basename(file)}">📂 Download {os.path.basename(file)}</a>' | |
| elif file_type == "mp3": | |
| return f'<a href="data:audio/mpeg;base64,{b64}" download="{os.path.basename(file)}">🎵 Download {os.path.basename(file)}</a>' | |
| elif file_type == "wav": | |
| return f'<a href="data:audio/wav;base64,{b64}" download="{os.path.basename(file)}">🔊 Download {os.path.basename(file)}</a>' | |
| elif file_type == "md": | |
| return f'<a href="data:text/markdown;base64,{b64}" download="{os.path.basename(file)}">📝 Download {os.path.basename(file)}</a>' | |
| else: | |
| return f'<a href="data:application/octet-stream;base64,{b64}" download="{os.path.basename(file)}">Download {os.path.basename(file)}</a>' | |
| def clean_for_speech(text: str) -> str: | |
| text = text.replace("\n", " ") | |
| text = text.replace("</s>", " ") | |
| text = text.replace("#", "") | |
| text = re.sub(r"\(https?:\/\/[^\)]+\)", "", text) | |
| text = re.sub(r"\s+", " ", text).strip() | |
| return text | |
| async def edge_tts_generate_audio(text, voice="en-US-AriaNeural", rate=0, pitch=0, file_format="mp3"): | |
| text = clean_for_speech(text) | |
| if not text.strip(): | |
| return None | |
| rate_str = f"{rate:+d}%" | |
| pitch_str = f"{pitch:+d}Hz" | |
| communicate = edge_tts.Communicate(text, voice, rate=rate_str, pitch=pitch_str) | |
| out_fn = generate_filename(text, text, file_type=file_format) | |
| await communicate.save(out_fn) | |
| return out_fn | |
| def speak_with_edge_tts(text, voice="en-US-AriaNeural", rate=0, pitch=0, file_format="mp3"): | |
| return asyncio.run(edge_tts_generate_audio(text, voice, rate, pitch, file_format)) | |
| def play_and_download_audio(file_path, file_type="mp3"): | |
| if file_path and os.path.exists(file_path): | |
| st.audio(file_path) | |
| dl_link = get_download_link(file_path, file_type=file_type) | |
| st.markdown(dl_link, unsafe_allow_html=True) | |
| def save_qa_with_audio(question, answer, voice=None): | |
| """Save Q&A to markdown and generate audio""" | |
| if not voice: | |
| voice = st.session_state['tts_voice'] | |
| # Create markdown file | |
| combined_text = f"# Question\n{question}\n\n# Answer\n{answer}" | |
| md_file = create_file(question, answer, "md") | |
| # Generate audio file | |
| audio_text = f"Question: {question}\n\nAnswer: {answer}" | |
| audio_file = speak_with_edge_tts( | |
| audio_text, | |
| voice=voice, | |
| file_format=st.session_state['audio_format'] | |
| ) | |
| return md_file, audio_file | |
| def process_paper_content(paper): | |
| marquee_text = f"📄 {paper['title']} | 👤 {paper['authors'][:100]} | 📝 {paper['summary'][:100]}" | |
| audio_text = f"{paper['title']} by {paper['authors']}. {paper['summary']}" | |
| return marquee_text, audio_text | |
| def create_paper_audio_files(papers, input_question): | |
| for paper in papers: | |
| try: | |
| marquee_text, audio_text = process_paper_content(paper) | |
| audio_text = clean_for_speech(audio_text) | |
| file_format = st.session_state['audio_format'] | |
| audio_file = speak_with_edge_tts(audio_text, | |
| voice=st.session_state['tts_voice'], | |
| file_format=file_format) | |
| paper['full_audio'] = audio_file | |
| st.write(f"### {FILE_EMOJIS.get(file_format, '')} {os.path.basename(audio_file)}") | |
| play_and_download_audio(audio_file, file_type=file_format) | |
| paper['marquee_text'] = marquee_text | |
| except Exception as e: | |
| st.warning(f"Error processing paper {paper['title']}: {str(e)}") | |
| paper['full_audio'] = None | |
| paper['marquee_text'] = None | |
| def display_papers(papers, marquee_settings): | |
| st.write("## Research Papers") | |
| papercount = 0 | |
| for paper in papers: | |
| papercount += 1 | |
| if papercount <= 20: | |
| if paper.get('marquee_text'): | |
| display_marquee(paper['marquee_text'], | |
| marquee_settings, | |
| key_suffix=f"paper_{papercount}") | |
| with st.expander(f"{papercount}. 📄 {paper['title']}", expanded=True): | |
| st.markdown(f"**{paper['date']} | {paper['title']} | ⬇️**") | |
| st.markdown(f"*{paper['authors']}*") | |
| st.markdown(paper['summary']) | |
| if paper.get('full_audio'): | |
| st.write("📚 Paper Audio") | |
| file_ext = os.path.splitext(paper['full_audio'])[1].lower().strip('.') | |
| if file_ext in ['mp3', 'wav']: | |
| st.audio(paper['full_audio']) | |
| def parse_arxiv_refs(ref_text: str): | |
| if not ref_text: | |
| return [] | |
| results = [] | |
| current_paper = {} | |
| lines = ref_text.split('\n') | |
| for i, line in enumerate(lines): | |
| if line.count('|') == 2: | |
| if current_paper: | |
| results.append(current_paper) | |
| if len(results) >= 20: | |
| break | |
| try: | |
| header_parts = line.strip('* ').split('|') | |
| date = header_parts[0].strip() | |
| title = header_parts[1].strip() | |
| url_match = re.search(r'(https://arxiv.org/\S+)', line) | |
| url = url_match.group(1) if url_match else f"paper_{len(results)}" | |
| current_paper = { | |
| 'date': date, | |
| 'title': title, | |
| 'url': url, | |
| 'authors': '', | |
| 'summary': '', | |
| 'content_start': i + 1 | |
| } | |
| except Exception as e: | |
| st.warning(f"Error parsing paper header: {str(e)}") | |
| current_paper = {} | |
| continue | |
| elif current_paper: | |
| if not current_paper['authors']: | |
| current_paper['authors'] = line.strip('* ') | |
| else: | |
| if current_paper['summary']: | |
| current_paper['summary'] += ' ' + line.strip() | |
| else: | |
| current_paper['summary'] = line.strip() | |
| if current_paper: | |
| results.append(current_paper) | |
| return results[:20] | |
| # ---------------------------- Edit 1/11/2025 - add a constitution to my arxiv system templating to build configurable character and personality of IO. | |
| def perform_ai_lookup(q, vocal_summary=True, extended_refs=False, | |
| titles_summary=True, full_audio=False): | |
| start = time.time() | |
| SCIENCE_PROBLEM = "Solving visual acuity of UI screens using gradio and streamlit apps that run reactive style components using html components and apis across gradio and streamlit partner apps - a cloud of contiguous org supporting ai agents" | |
| SONG_STYLE = "techno, trance, industrial" | |
| ai_constitution = """ | |
| You are a talented AI coder and songwriter with a unique ability to explain scientific concepts through music with code easter eggs.. Your task is to create a song that not only entertains but also educates listeners about a specific science problem and its potential solutions. | |
| 1. First, carefully read and analyze the science problem provided: | |
| <science_problem> | |
| {{SCIENCE_PROBLEM}} | |
| </science_problem> | |
| 2. Next, consider the song style requested: | |
| <song_style> | |
| {{SONG_STYLE}} | |
| </song_style> | |
| 3. Follow these steps to create your song: | |
| 1. Analyze the science problem: | |
| - Identify the key issues and challenges | |
| - Note any potential solutions or technologies mentioned, especially in AI | |
| - Consider how these concepts can be simplified for a general audience | |
| 2. Plan your song structure. Document and enumerate in markdown outlines.: | |
| - Decide on a verse-chorus format that fits the song style | |
| - Plan to introduce the problem in the verses | |
| - Use the chorus to highlight key points or solutions | |
| 3. Write your lyrics.: | |
| - Begin with an attention-grabbing opening line | |
| - Use metaphors and analogies to explain complex concepts | |
| - Ensure the lyrics flow naturally and fit the rhythm of the chosen song style | |
| - Include scientific terminology, but explain it in simple terms within the song | |
| 4. Incorporate scientific explanations.: | |
| - Weave factual information throughout the verses | |
| - Use the chorus to reinforce main ideas or solutions | |
| - Ensure that the scientific content is accurate and up-to-date | |
| 5. Match the requested song style.: | |
| - Adapt your word choice and phrasing to fit the genre | |
| - Consider the typical rhythm and structure of songs in this style | |
| - If applicable, include style-specific elements (e.g., a rap break, a power ballad chorus) | |
| 6. Review and refine, add useful paper titles, keywords, descriptions of topics and concepts.: | |
| - Check that the song effectively communicates the science problem and solutions | |
| - Ensure the lyrics are catchy and memorable | |
| - Verify that the song maintains the requested style throughout | |
| """ | |
| client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern") | |
| refs = client.predict(q, 20, "Semantic Search", | |
| "mistralai/Mixtral-8x7B-Instruct-v0.1", | |
| api_name="/update_with_rag_md")[0] | |
| st.code(refs) | |
| r2 = client.predict(q, "mistralai/Mixtral-8x7B-Instruct-v0.1", | |
| True, api_name="/ask_llm") | |
| st.code(r2) | |
| result = f"### 🔎 {q}\n\n{r2}\n\n{refs}" | |
| st.markdown(result) | |
| st.code(ai_constitution) | |
| md_file, audio_file = save_qa_with_audio(q, result) | |
| st.subheader("📝 Main Response Audio") | |
| play_and_download_audio(audio_file, st.session_state['audio_format']) | |
| papers = parse_arxiv_refs(refs) | |
| if papers: | |
| create_paper_audio_files(papers, input_question=q) | |
| display_papers(papers, get_marquee_settings()) | |
| else: | |
| st.warning("No papers found in the response.") | |
| elapsed = time.time()-start | |
| st.write(f"**Total Elapsed:** {elapsed:.2f} s") | |
| return result | |
| def process_voice_input(text): | |
| if not text: | |
| return | |
| st.subheader("🔍 Search Results") | |
| result = perform_ai_lookup( | |
| text, | |
| vocal_summary=True, | |
| extended_refs=False, | |
| titles_summary=True, | |
| full_audio=True | |
| ) | |
| md_file, audio_file = save_qa_with_audio(text, result) | |
| st.subheader("📝 Generated Files") | |
| st.write(f"Markdown: {md_file}") | |
| st.write(f"Audio: {audio_file}") | |
| play_and_download_audio(audio_file, st.session_state['audio_format']) | |
| def load_files_for_sidebar(): | |
| md_files = glob.glob("*.md") | |
| mp3_files = glob.glob("*.mp3") | |
| wav_files = glob.glob("*.wav") | |
| md_files = [f for f in md_files if os.path.basename(f).lower() != 'readme.md'] | |
| all_files = md_files + mp3_files + wav_files | |
| groups = defaultdict(list) | |
| prefix_length = len("MM_dd_yy_hh_mm_AP") | |
| for f in all_files: | |
| basename = os.path.basename(f) | |
| if len(basename) >= prefix_length and '_' in basename: | |
| group_name = basename[:prefix_length] | |
| groups[group_name].append(f) | |
| else: | |
| groups['Other'].append(f) | |
| sorted_groups = sorted(groups.items(), | |
| key=lambda x: x[0] if x[0] != 'Other' else '', | |
| reverse=True) | |
| return sorted_groups | |
| def display_file_manager_sidebar(groups_sorted): | |
| st.sidebar.title("🎵 Audio & Docs Manager") | |
| all_md = [] | |
| all_mp3 = [] | |
| all_wav = [] | |
| for _, files in groups_sorted: | |
| for f in files: | |
| if f.endswith(".md"): | |
| all_md.append(f) | |
| elif f.endswith(".mp3"): | |
| all_mp3.append(f) | |
| elif f.endswith(".wav"): | |
| all_wav.append(f) | |
| col1, col2, col3, col4 = st.sidebar.columns(4) | |
| with col1: | |
| if st.button("🗑 DelMD"): | |
| for f in all_md: | |
| os.remove(f) | |
| st.session_state.should_rerun = True | |
| with col2: | |
| if st.button("🗑 DelMP3"): | |
| for f in all_mp3: | |
| os.remove(f) | |
| st.session_state.should_rerun = True | |
| with col3: | |
| if st.button("🗑 DelWAV"): | |
| for f in all_wav: | |
| os.remove(f) | |
| st.session_state.should_rerun = True | |
| with col4: | |
| if st.button("⬇️ ZipAll"): | |
| zip_name = create_zip_of_files(all_md, all_mp3, all_wav, st.session_state.get('last_query', '')) | |
| if zip_name: | |
| st.sidebar.markdown(get_download_link(zip_name, "zip"), unsafe_allow_html=True) | |
| for group_name, files in groups_sorted: | |
| if group_name == 'Other': | |
| group_label = 'Other Files' | |
| else: | |
| try: | |
| timestamp_dt = datetime.strptime(group_name, "%m_%d_%y_%I_%M_%p") | |
| group_label = timestamp_dt.strftime("%b %d, %Y %I:%M %p") | |
| except ValueError: | |
| group_label = group_name | |
| with st.sidebar.expander(f"📁 {group_label} ({len(files)})", expanded=True): | |
| c1, c2 = st.columns(2) | |
| with c1: | |
| if st.button("👀 View", key=f"view_group_{group_name}"): | |
| st.session_state.viewing_prefix = group_name | |
| with c2: | |
| if st.button("🗑 Del", key=f"del_group_{group_name}"): | |
| for f in files: | |
| os.remove(f) | |
| st.success(f"Deleted group {group_label}!") | |
| st.session_state.should_rerun = True | |
| for f in files: | |
| fname = os.path.basename(f) | |
| ext = os.path.splitext(fname)[1].lower() | |
| emoji = FILE_EMOJIS.get(ext.strip('.'), '') | |
| mtime = os.path.getmtime(f) | |
| ctime = datetime.fromtimestamp(mtime).strftime("%I:%M:%S %p") | |
| st.write(f"{emoji} **{fname}** - {ctime}") | |
| def create_zip_of_files(md_files, mp3_files, wav_files, input_question): | |
| md_files = [f for f in md_files if os.path.basename(f).lower() != 'readme.md'] | |
| all_files = md_files + mp3_files + wav_files | |
| if not all_files: | |
| return None | |
| all_content = [] | |
| for f in all_files: | |
| if f.endswith('.md'): | |
| with open(f, 'r', encoding='utf-8') as file: | |
| all_content.append(file.read()) | |
| elif f.endswith('.mp3') or f.endswith('.wav'): | |
| basename = os.path.splitext(os.path.basename(f))[0] | |
| words = basename.replace('_', ' ') | |
| all_content.append(words) | |
| all_content.append(input_question) | |
| combined_content = " ".join(all_content) | |
| info_terms = get_high_info_terms(combined_content, top_n=10) | |
| timestamp = format_timestamp_prefix() | |
| name_text = '_'.join(term.replace(' ', '-') for term in info_terms[:10]) | |
| zip_name = f"{timestamp}_{name_text}.zip" | |
| with zipfile.ZipFile(zip_name, 'w') as z: | |
| for f in all_files: | |
| z.write(f) | |
| return zip_name | |
| def main(): | |
| # Update marquee settings UI first | |
| update_marquee_settings_ui() | |
| marquee_settings = get_marquee_settings() | |
| # Initial welcome marquee | |
| display_marquee(st.session_state['marquee_content'], | |
| {**marquee_settings, "font-size": "28px", "lineHeight": "50px"}, | |
| key_suffix="welcome") | |
| # Load files for sidebar | |
| groups_sorted = load_files_for_sidebar() | |
| # Update marquee content when viewing files | |
| if st.session_state.viewing_prefix: | |
| for group_name, files in groups_sorted: | |
| if group_name == st.session_state.viewing_prefix: | |
| for f in files: | |
| if f.endswith('.md'): | |
| with open(f, 'r', encoding='utf-8') as file: | |
| st.session_state['marquee_content'] = file.read()[:280] | |
| # Voice Settings | |
| st.sidebar.markdown("### 🎤 Voice Settings") | |
| selected_voice = st.sidebar.selectbox( | |
| "Select TTS Voice:", | |
| options=EDGE_TTS_VOICES, | |
| index=EDGE_TTS_VOICES.index(st.session_state['tts_voice']) | |
| ) | |
| # Audio Format Settings | |
| st.sidebar.markdown("### 🔊 Audio Format") | |
| selected_format = st.sidebar.radio( | |
| "Choose Audio Format:", | |
| options=["MP3", "WAV"], | |
| index=0 | |
| ) | |
| if selected_voice != st.session_state['tts_voice']: | |
| st.session_state['tts_voice'] = selected_voice | |
| st.rerun() | |
| if selected_format.lower() != st.session_state['audio_format']: | |
| st.session_state['audio_format'] = selected_format.lower() | |
| st.rerun() | |
| # Main Interface | |
| tab_main = st.radio("Action:", ["🎤 Voice", "📸 Media", "🔍 ArXiv", "📝 Editor"], | |
| horizontal=True) | |
| mycomponent = components.declare_component("mycomponent", path="mycomponent") | |
| val = mycomponent(my_input_value="Hello") | |
| if val: | |
| val_stripped = val.replace('\\n', ' ') | |
| edited_input = st.text_area("✏️ Edit Input:", value=val_stripped, height=100) | |
| run_option = st.selectbox("Model:", ["Arxiv"]) | |
| col1, col2 = st.columns(2) | |
| with col1: | |
| autorun = st.checkbox("⚙ AutoRun", value=True) | |
| with col2: | |
| full_audio = st.checkbox("📚FullAudio", value=False) | |
| input_changed = (val != st.session_state.old_val) | |
| if autorun and input_changed: | |
| st.session_state.old_val = val | |
| st.session_state.last_query = edited_input | |
| result = perform_ai_lookup(edited_input, vocal_summary=True, extended_refs=False, | |
| titles_summary=True, full_audio=full_audio) | |
| else: | |
| if st.button("▶ Run"): | |
| st.session_state.old_val = val | |
| st.session_state.last_query = edited_input | |
| result = perform_ai_lookup(edited_input, vocal_summary=True, extended_refs=False, | |
| titles_summary=True, full_audio=full_audio) | |
| if tab_main == "🔍 ArXiv": | |
| st.subheader("🔍 Query ArXiv") | |
| q = st.text_input("🔍 Query:", key="arxiv_query") | |
| st.markdown("### 🎛 Options") | |
| vocal_summary = st.checkbox("🎙ShortAudio", value=True, key="option_vocal_summary") | |
| extended_refs = st.checkbox("📜LongRefs", value=False, key="option_extended_refs") | |
| titles_summary = st.checkbox("🔖TitlesOnly", value=True, key="option_titles_summary") | |
| full_audio = st.checkbox("📚FullAudio", value=False, key="option_full_audio") | |
| full_transcript = st.checkbox("🧾FullTranscript", value=False, key="option_full_transcript") | |
| if q and st.button("🔍Run"): | |
| st.session_state.last_query = q | |
| result = perform_ai_lookup(q, vocal_summary=vocal_summary, extended_refs=extended_refs, | |
| titles_summary=titles_summary, full_audio=full_audio) | |
| if full_transcript: | |
| create_file(q, result, "md") | |
| elif tab_main == "🎤 Voice": | |
| st.subheader("🎤 Voice Input") | |
| user_text = st.text_area("💬 Message:", height=100) | |
| user_text = user_text.strip().replace('\n', ' ') | |
| if st.button("📨 Send"): | |
| process_voice_input(user_text) | |
| st.subheader("📜 Chat History") | |
| for c in st.session_state.chat_history: | |
| st.write("**You:**", c["user"]) | |
| st.write("**Response:**", c["claude"]) | |
| elif tab_main == "📸 Media": | |
| st.header("📸 Images & 🎥 Videos") | |
| tabs = st.tabs(["🖼 Images", "🎥 Video"]) | |
| with tabs[0]: | |
| imgs = glob.glob("*.png") + glob.glob("*.jpg") | |
| if imgs: | |
| c = st.slider("Cols", 1, 5, 3) | |
| cols = st.columns(c) | |
| for i, f in enumerate(imgs): | |
| with cols[i % c]: | |
| st.image(Image.open(f), use_container_width=True) | |
| if st.button(f"👀 Analyze {os.path.basename(f)}", key=f"analyze_{f}"): | |
| response = openai_client.chat.completions.create( | |
| model=st.session_state["openai_model"], | |
| messages=[ | |
| {"role": "system", "content": "Analyze the image content."}, | |
| {"role": "user", "content": [ | |
| {"type": "image_url", | |
| "image_url": {"url": f"data:image/jpeg;base64,{base64.b64encode(open(f, 'rb').read()).decode()}"}} | |
| ]} | |
| ] | |
| ) | |
| st.markdown(response.choices[0].message.content) | |
| else: | |
| st.write("No images found.") | |
| with tabs[1]: | |
| vids = glob.glob("*.mp4") | |
| if vids: | |
| for v in vids: | |
| with st.expander(f"🎥 {os.path.basename(v)}"): | |
| st.video(v) | |
| if st.button(f"Analyze {os.path.basename(v)}", key=f"analyze_{v}"): | |
| frames = process_video(v) | |
| response = openai_client.chat.completions.create( | |
| model=st.session_state["openai_model"], | |
| messages=[ | |
| {"role": "system", "content": "Analyze video frames."}, | |
| {"role": "user", "content": [ | |
| {"type": "image_url", | |
| "image_url": {"url": f"data:image/jpeg;base64,{frame}"}} | |
| for frame in frames | |
| ]} | |
| ] | |
| ) | |
| st.markdown(response.choices[0].message.content) | |
| else: | |
| st.write("No videos found.") | |
| elif tab_main == "📝 Editor": | |
| if st.session_state.editing_file: | |
| st.subheader(f"Editing: {st.session_state.editing_file}") | |
| new_text = st.text_area("✏️ Content:", st.session_state.edit_new_content, height=300) | |
| if st.button("💾 Save"): | |
| with open(st.session_state.editing_file, 'w', encoding='utf-8') as f: | |
| f.write(new_text) | |
| st.success("File updated successfully!") | |
| st.session_state.should_rerun = True | |
| st.session_state.editing_file = None | |
| else: | |
| st.write("Select a file from the sidebar to edit.") | |
| # Display file manager in sidebar | |
| display_file_manager_sidebar(groups_sorted) | |
| # Display viewed group content | |
| if st.session_state.viewing_prefix and any(st.session_state.viewing_prefix == group for group, _ in groups_sorted): | |
| st.write("---") | |
| st.write(f"**Viewing Group:** {st.session_state.viewing_prefix}") | |
| for group_name, files in groups_sorted: | |
| if group_name == st.session_state.viewing_prefix: | |
| for f in files: | |
| fname = os.path.basename(f) | |
| ext = os.path.splitext(fname)[1].lower().strip('.') | |
| st.write(f"### {fname}") | |
| if ext == "md": | |
| content = open(f, 'r', encoding='utf-8').read() | |
| st.markdown(content) | |
| elif ext in ["mp3", "wav"]: | |
| st.audio(f) | |
| else: | |
| st.markdown(get_download_link(f), unsafe_allow_html=True) | |
| break | |
| if st.button("❌ Close"): | |
| st.session_state.viewing_prefix = None | |
| st.session_state['marquee_content'] = "🚀 Welcome to TalkingAIResearcher | 🤖 Your Research Assistant" | |
| st.markdown(""" | |
| <style> | |
| .main { background: linear-gradient(to right, #1a1a1a, #2d2d2d); color: #fff; } | |
| .stMarkdown { font-family: 'Helvetica Neue', sans-serif; } | |
| .stButton>button { margin-right: 0.5rem; } | |
| </style> | |
| """, unsafe_allow_html=True) | |
| if st.session_state.should_rerun: | |
| st.session_state.should_rerun = False | |
| st.rerun() | |
| if __name__ == "__main__": | |
| main() |