Update app.py
Browse files
app.py
CHANGED
@@ -1,26 +1,70 @@
|
|
1 |
import streamlit as st
|
2 |
import pandas as pd
|
3 |
import subprocess
|
|
|
4 |
|
5 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
data = {
|
7 |
-
"Reference": [
|
|
|
|
|
|
|
8 |
"Year": [2024, 2024, 2023, 2024, 2024, 2024, 2024],
|
9 |
-
"Scope": [
|
10 |
-
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
"Papers": ["Not specified", "Not specified", 281, "Not specified", 19, "Not specified", 127]
|
13 |
}
|
14 |
|
15 |
-
#
|
16 |
-
st.title("π LLMs for Cyber Security: State-of-the-Art Surveys")
|
17 |
-
st.write("This app is based on the paper: [Large Language Models for Cyber Security](https://arxiv.org/pdf/2405.04760v3). It showcases LLMs in the cybersecurity landscape.")
|
18 |
-
|
19 |
-
# Display the table
|
20 |
df = pd.DataFrame(data)
|
21 |
-
st.write(df)
|
22 |
|
23 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
mermaid_code = '''
|
25 |
graph TD;
|
26 |
A[LLMs in Security] --> B[Security Application]
|
@@ -30,48 +74,170 @@ graph TD;
|
|
30 |
E --> F[Data]
|
31 |
'''
|
32 |
|
33 |
-
|
34 |
-
st.markdown(f"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
st.markdown("""
|
38 |
<style>
|
39 |
.scrollable-content {
|
40 |
-
height:
|
41 |
overflow-y: scroll;
|
|
|
|
|
42 |
}
|
43 |
</style>
|
|
|
|
|
|
|
|
|
44 |
<div class="scrollable-content">
|
45 |
-
<
|
46 |
<ul>
|
47 |
-
<li>2022-2023
|
48 |
-
<li>2020-2024
|
49 |
-
<li>
|
|
|
|
|
|
|
|
|
50 |
</ul>
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
</div>
|
52 |
""", unsafe_allow_html=True)
|
53 |
|
54 |
-
#
|
|
|
|
|
|
|
55 |
st.subheader("π Run Python Dependency Security Audit")
|
56 |
|
57 |
-
#
|
|
|
|
|
|
|
|
|
|
|
58 |
if st.button('Run pip-audit for Security Check'):
|
59 |
with st.spinner('Running security audit...'):
|
|
|
|
|
|
|
60 |
result = subprocess.run(['pip-audit'], capture_output=True, text=True)
|
|
|
61 |
st.code(result.stdout)
|
|
|
62 |
|
63 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
st.subheader("π€ AI Pair Programming: Security Recommendations")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
st.markdown("""
|
66 |
-
-
|
67 |
-
-
|
68 |
-
-
|
|
|
|
|
69 |
""")
|
70 |
|
71 |
-
#
|
72 |
-
st.
|
73 |
-
|
74 |
-
- **Azure Container Apps**: Easily deploy and scale your app with Azure Container Apps.
|
75 |
-
- **Azure Container Registry**: Store and manage container images.
|
76 |
-
- **Cosmos DB**: Use Cosmos DB to store security audit results and logs.
|
77 |
""")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
import pandas as pd
|
3 |
import subprocess
|
4 |
+
import time
|
5 |
|
6 |
+
# ---------------------------- Header and Introduction ----------------------------
|
7 |
+
|
8 |
+
# Set the page configuration
|
9 |
+
st.set_page_config(
|
10 |
+
page_title="LLMs for Cyber Security",
|
11 |
+
page_icon="π",
|
12 |
+
layout="wide",
|
13 |
+
initial_sidebar_state="expanded",
|
14 |
+
)
|
15 |
+
|
16 |
+
# Title of the application
|
17 |
+
st.title("π LLMs for Cyber Security: State-of-the-Art Surveys")
|
18 |
+
|
19 |
+
# Introduction text with link to the paper
|
20 |
+
st.markdown("""
|
21 |
+
This app is based on the paper: [Large Language Models for Cyber Security](https://arxiv.org/pdf/2405.04760v3).
|
22 |
+
It showcases LLMs in the cybersecurity landscape, summarizing key surveys and insights.
|
23 |
+
""")
|
24 |
+
|
25 |
+
# ---------------------------- Data Preparation ----------------------------
|
26 |
+
|
27 |
+
# Create the data dictionary
|
28 |
data = {
|
29 |
+
"Reference": [
|
30 |
+
"Motlagh et al.", "Divakaran et al.", "Yao et al.", "Yigit et al.",
|
31 |
+
"Coelho et al.", "Novelli et al.", "LLM4Security"
|
32 |
+
],
|
33 |
"Year": [2024, 2024, 2023, 2024, 2024, 2024, 2024],
|
34 |
+
"Scope": [
|
35 |
+
"Security application", "Security application", "Security application, Security of LLM",
|
36 |
+
"Security application, Security of LLM", "Security application",
|
37 |
+
"Security application", "Security application"
|
38 |
+
],
|
39 |
+
"Dimensions": [
|
40 |
+
"Task", "Task", "Model, Task", "Task", "Task, Domain specific technique",
|
41 |
+
"Task, Model, Domain specific technique", "Model, Task, Domain specific technique, Data"
|
42 |
+
],
|
43 |
+
"Time frame": [
|
44 |
+
"2022-2023", "2020-2024", "2019-2024", "2020-2024",
|
45 |
+
"2021-2023", "2020-2024", "2020-2024"
|
46 |
+
],
|
47 |
"Papers": ["Not specified", "Not specified", 281, "Not specified", 19, "Not specified", 127]
|
48 |
}
|
49 |
|
50 |
+
# Convert the data dictionary into a pandas DataFrame
|
|
|
|
|
|
|
|
|
51 |
df = pd.DataFrame(data)
|
|
|
52 |
|
53 |
+
# ---------------------------- Display Data Table ----------------------------
|
54 |
+
|
55 |
+
st.subheader("π Survey Overview Table")
|
56 |
+
|
57 |
+
# Display the DataFrame as an interactive table
|
58 |
+
st.dataframe(df, height=300)
|
59 |
+
|
60 |
+
# Add some spacing
|
61 |
+
st.markdown("---")
|
62 |
+
|
63 |
+
# ---------------------------- Mermaid Diagram Visualization ----------------------------
|
64 |
+
|
65 |
+
st.subheader("π‘οΈ Security Model Visualization with Mermaid")
|
66 |
+
|
67 |
+
# Define the Mermaid code
|
68 |
mermaid_code = '''
|
69 |
graph TD;
|
70 |
A[LLMs in Security] --> B[Security Application]
|
|
|
74 |
E --> F[Data]
|
75 |
'''
|
76 |
|
77 |
+
# Display the Mermaid diagram using markdown
|
78 |
+
st.markdown(f"""
|
79 |
+
```mermaid
|
80 |
+
{mermaid_code}
|
81 |
+
```
|
82 |
+
""")
|
83 |
+
|
84 |
+
# Explanation of the diagram
|
85 |
+
st.markdown("""
|
86 |
+
Figure: The diagram illustrates how Large Language Models (LLMs) are applied in security, highlighting the flow from general applications to specific tasks, models, domain-specific techniques, and data considerations.
|
87 |
+
""")
|
88 |
|
89 |
+
# Add some spacing
|
90 |
+
st.markdown("---")
|
91 |
+
|
92 |
+
# ---------------------------- Scrollable Content for Additional Insights ----------------------------
|
93 |
+
st.subheader("π Additional Insights")
|
94 |
+
|
95 |
+
# Custom CSS for scrollable content
|
96 |
st.markdown("""
|
97 |
<style>
|
98 |
.scrollable-content {
|
99 |
+
height: 250px;
|
100 |
overflow-y: scroll;
|
101 |
+
padding: 10px;
|
102 |
+
border: 1px solid #ccc;
|
103 |
}
|
104 |
</style>
|
105 |
+
""", unsafe_allow_html=True)
|
106 |
+
|
107 |
+
# Scrollable content with insights
|
108 |
+
st.markdown("""
|
109 |
<div class="scrollable-content">
|
110 |
+
<h4>Survey Highlights:</h4>
|
111 |
<ul>
|
112 |
+
<li><strong>Motlagh et al. (2024)</strong>: Focused on security applications within 2022-2023 but did not specify the number of papers reviewed.</li>
|
113 |
+
<li><strong>Divakaran et al. (2024)</strong>: Explored security applications from 2020-2024 without specifying the number of papers.</li>
|
114 |
+
<li><strong>Yao et al. (2023)</strong>: Reviewed 281 papers covering both security applications and the security of LLMs between 2019-2024.</li>
|
115 |
+
<li><strong>Yigit et al. (2024)</strong>: Concentrated on security applications and the security of LLMs from 2020-2024 without specifying paper count.</li>
|
116 |
+
<li><strong>Coelho et al. (2024)</strong>: Introduced domain-specific techniques in security applications, covering 19 papers from 2021-2023.</li>
|
117 |
+
<li><strong>Novelli et al. (2024)</strong>: Discussed tasks, models, and domain-specific techniques in security applications without specifying paper count.</li>
|
118 |
+
<li><strong>LLM4Security (2024)</strong>: Comprehensive survey of 127 papers from 2020-2024, covering models, tasks, domain-specific techniques, and data.</li>
|
119 |
</ul>
|
120 |
+
<h4>Key Observations:</h4>
|
121 |
+
<ol>
|
122 |
+
<li>The interest in applying LLMs to cybersecurity has significantly increased since 2019.</li>
|
123 |
+
<li>There's a growing focus on not just using LLMs for security tasks but also securing the LLMs themselves.</li>
|
124 |
+
<li>Domain-specific techniques are becoming more prominent, indicating a move towards specialized security solutions.</li>
|
125 |
+
</ol>
|
126 |
</div>
|
127 |
""", unsafe_allow_html=True)
|
128 |
|
129 |
+
# Add some spacing
|
130 |
+
st.markdown("---")
|
131 |
+
|
132 |
+
# ---------------------------- Security Audit Section ----------------------------
|
133 |
st.subheader("π Run Python Dependency Security Audit")
|
134 |
|
135 |
+
# Explanation of the security audit
|
136 |
+
st.markdown("""
|
137 |
+
Keeping your project's dependencies secure is crucial. Use the button below to run a security audit on the Python packages used in this environment.
|
138 |
+
""")
|
139 |
+
|
140 |
+
# Button to trigger the security audit
|
141 |
if st.button('Run pip-audit for Security Check'):
|
142 |
with st.spinner('Running security audit...'):
|
143 |
+
# Simulate a delay for the audit process
|
144 |
+
time.sleep(2)
|
145 |
+
# Run the pip-audit command
|
146 |
result = subprocess.run(['pip-audit'], capture_output=True, text=True)
|
147 |
+
# Display the audit results
|
148 |
st.code(result.stdout)
|
149 |
+
st.success('Security audit completed!')
|
150 |
|
151 |
+
# Note about pip-audit
|
152 |
+
st.markdown("""
|
153 |
+
Note: The pip-audit tool checks your Python environment for packages with known vulnerabilities, referencing public CVE databases.
|
154 |
+
""")
|
155 |
+
|
156 |
+
# Add some spacing
|
157 |
+
st.markdown("---")
|
158 |
+
|
159 |
+
# ---------------------------- AI Pair Programming Recommendations ----------------------------
|
160 |
st.subheader("π€ AI Pair Programming: Security Recommendations")
|
161 |
+
|
162 |
+
st.markdown("""
|
163 |
+
Leveraging AI in pair programming can enhance code security and quality. Here are some recommendations:
|
164 |
+
|
165 |
+
1. **Reduce Code Complexity**: AI tools can suggest code refactoring to simplify complex code blocks, making them more maintainable and less error-prone.
|
166 |
+
2. **Minimize Attack Surface**: AI can identify unnecessary code paths and dependencies, allowing developers to remove or secure them.
|
167 |
+
3. **Automate Security Scans**: Integrate AI-powered security scanners to continuously monitor code for vulnerabilities.
|
168 |
+
4. **Code Review Assistance**: AI can assist in code reviews by highlighting potential security issues and non-compliance with best practices.
|
169 |
+
5. **Secure Coding Practices**: AI can provide real-time suggestions for secure coding patterns and discourage the use of insecure functions.
|
170 |
+
""")
|
171 |
+
|
172 |
+
# Add some spacing
|
173 |
+
st.markdown("---")
|
174 |
+
|
175 |
+
# ---------------------------- Azure Deployment Information ----------------------------
|
176 |
+
st.subheader("βοΈ Azure Deployment Information")
|
177 |
+
|
178 |
+
st.markdown("""
|
179 |
+
While this demo does not include operational deployment, here's how you can deploy this application using Azure services:
|
180 |
+
|
181 |
+
**Azure Container Apps**: Use Azure Container Apps to deploy and manage containerized applications at scale without managing infrastructure.
|
182 |
+
- Benefits:
|
183 |
+
- Serverless containers
|
184 |
+
- Built-in support for scaling
|
185 |
+
- Integrated with Azure services
|
186 |
+
|
187 |
+
**Azure Container Registry (ACR)**: Store and manage your container images securely.
|
188 |
+
- Steps:
|
189 |
+
1. Build your Docker image.
|
190 |
+
2. Push the image to ACR.
|
191 |
+
3. Configure Azure Container Apps to pull the image from ACR.
|
192 |
+
|
193 |
+
**Azure Cosmos DB**: Use Cosmos DB to store security audit results, logs, and other application data.
|
194 |
+
- Features:
|
195 |
+
- Globally distributed
|
196 |
+
- Multi-model database service
|
197 |
+
- Low latency and high availability
|
198 |
+
""")
|
199 |
+
|
200 |
+
# Add some spacing
|
201 |
+
st.markdown("---")
|
202 |
+
|
203 |
+
# ---------------------------- Footer and Additional Resources ----------------------------
|
204 |
+
st.subheader("π Additional Resources")
|
205 |
+
|
206 |
+
# List of additional resources and links
|
207 |
st.markdown("""
|
208 |
+
- [Official Streamlit Documentation](https://docs.streamlit.io/)
|
209 |
+
- [pip-audit GitHub Repository](https://github.com/pypa/pip-audit)
|
210 |
+
- [Mermaid Live Editor](https://mermaid.live/) - Design and preview Mermaid diagrams.
|
211 |
+
- [Azure Container Apps Documentation](https://docs.microsoft.com/en-us/azure/container-apps/)
|
212 |
+
- [Cybersecurity Best Practices by CISA](https://www.cisa.gov/cybersecurity-best-practices)
|
213 |
""")
|
214 |
|
215 |
+
# Contact information or call to action
|
216 |
+
st.markdown("""
|
217 |
+
If you have any questions or would like to contribute to this project, please reach out or submit a pull request on GitHub.
|
|
|
|
|
|
|
218 |
""")
|
219 |
+
|
220 |
+
# Add some spacing
|
221 |
+
st.markdown("---")
|
222 |
+
|
223 |
+
# ---------------------------- Sidebar Content ----------------------------
|
224 |
+
# Add content to the sidebar
|
225 |
+
st.sidebar.title("Navigation")
|
226 |
+
st.sidebar.markdown("""
|
227 |
+
- [Introduction](#llms-for-cyber-security-state-of-the-art-surveys)
|
228 |
+
- [Survey Overview Table](#survey-overview-table)
|
229 |
+
- [Security Model Visualization](#security-model-visualization-with-mermaid)
|
230 |
+
- [Additional Insights](#additional-insights)
|
231 |
+
- [Security Audit](#run-python-dependency-security-audit)
|
232 |
+
- [AI Recommendations](#ai-pair-programming-security-recommendations)
|
233 |
+
- [Azure Deployment](#azure-deployment-information)
|
234 |
+
- [Additional Resources](#additional-resources)
|
235 |
+
""", unsafe_allow_html=True)
|
236 |
+
|
237 |
+
# Add an about section
|
238 |
+
st.sidebar.title("About")
|
239 |
+
st.sidebar.info("""
|
240 |
+
This Streamlit app was developed to demonstrate the intersection of Large Language Models and Cybersecurity, highlighting recent surveys and providing tools and recommendations for secure coding practices.
|
241 |
+
""")
|
242 |
+
|
243 |
+
# ---------------------------- End of App ----------------------------
|