Update app.py
Browse files
app.py
CHANGED
@@ -2,69 +2,36 @@ import streamlit as st
|
|
2 |
import pandas as pd
|
3 |
import subprocess
|
4 |
import time
|
|
|
5 |
|
6 |
# ---------------------------- Header and Introduction ----------------------------
|
7 |
|
8 |
-
|
9 |
-
st.set_page_config(
|
10 |
-
page_title="LLMs for Cyber Security",
|
11 |
-
page_icon="π",
|
12 |
-
layout="wide",
|
13 |
-
initial_sidebar_state="expanded",
|
14 |
-
)
|
15 |
-
|
16 |
-
# Title of the application
|
17 |
st.title("π LLMs for Cyber Security: State-of-the-Art Surveys")
|
18 |
-
|
19 |
-
# Introduction text with link to the paper
|
20 |
-
st.markdown("""
|
21 |
-
This app is based on the paper: [Large Language Models for Cyber Security](https://arxiv.org/pdf/2405.04760v3).
|
22 |
-
It showcases LLMs in the cybersecurity landscape, summarizing key surveys and insights.
|
23 |
-
""")
|
24 |
|
25 |
# ---------------------------- Data Preparation ----------------------------
|
26 |
|
27 |
-
# Create the data dictionary
|
28 |
data = {
|
29 |
-
"Reference": [
|
30 |
-
"Motlagh et al.", "Divakaran et al.", "Yao et al.", "Yigit et al.",
|
31 |
-
"Coelho et al.", "Novelli et al.", "LLM4Security"
|
32 |
-
],
|
33 |
"Year": [2024, 2024, 2023, 2024, 2024, 2024, 2024],
|
34 |
-
"Scope": [
|
35 |
-
|
36 |
-
|
37 |
-
"Security application", "Security application"
|
38 |
-
],
|
39 |
-
"Dimensions": [
|
40 |
-
"Task", "Task", "Model, Task", "Task", "Task, Domain specific technique",
|
41 |
-
"Task, Model, Domain specific technique", "Model, Task, Domain specific technique, Data"
|
42 |
-
],
|
43 |
-
"Time frame": [
|
44 |
-
"2022-2023", "2020-2024", "2019-2024", "2020-2024",
|
45 |
-
"2021-2023", "2020-2024", "2020-2024"
|
46 |
-
],
|
47 |
"Papers": ["Not specified", "Not specified", 281, "Not specified", 19, "Not specified", 127]
|
48 |
}
|
49 |
-
|
50 |
-
# Convert the data dictionary into a pandas DataFrame
|
51 |
df = pd.DataFrame(data)
|
52 |
|
53 |
# ---------------------------- Display Data Table ----------------------------
|
54 |
|
55 |
st.subheader("π Survey Overview Table")
|
56 |
-
|
57 |
-
# Display the DataFrame as an interactive table
|
58 |
st.dataframe(df, height=300)
|
59 |
-
|
60 |
-
# Add some spacing
|
61 |
st.markdown("---")
|
62 |
|
63 |
# ---------------------------- Mermaid Diagram Visualization ----------------------------
|
64 |
|
65 |
st.subheader("π‘οΈ Security Model Visualization with Mermaid")
|
66 |
|
67 |
-
# Define the Mermaid code
|
68 |
mermaid_code = '''
|
69 |
graph TD;
|
70 |
A[LLMs in Security] --> B[Security Application]
|
@@ -74,25 +41,155 @@ graph TD;
|
|
74 |
E --> F[Data]
|
75 |
'''
|
76 |
|
77 |
-
#
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
|
84 |
-
# Explanation of the diagram
|
85 |
st.markdown("""
|
86 |
Figure: The diagram illustrates how Large Language Models (LLMs) are applied in security, highlighting the flow from general applications to specific tasks, models, domain-specific techniques, and data considerations.
|
87 |
""")
|
|
|
88 |
|
89 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
st.markdown("---")
|
91 |
|
92 |
# ---------------------------- Scrollable Content for Additional Insights ----------------------------
|
93 |
-
st.subheader("π Additional Insights")
|
94 |
|
95 |
-
|
96 |
st.markdown("""
|
97 |
<style>
|
98 |
.scrollable-content {
|
@@ -102,10 +199,6 @@ st.markdown("""
|
|
102 |
border: 1px solid #ccc;
|
103 |
}
|
104 |
</style>
|
105 |
-
""", unsafe_allow_html=True)
|
106 |
-
|
107 |
-
# Scrollable content with insights
|
108 |
-
st.markdown("""
|
109 |
<div class="scrollable-content">
|
110 |
<h4>Survey Highlights:</h4>
|
111 |
<ul>
|
@@ -125,40 +218,26 @@ st.markdown("""
|
|
125 |
</ol>
|
126 |
</div>
|
127 |
""", unsafe_allow_html=True)
|
128 |
-
|
129 |
-
# Add some spacing
|
130 |
st.markdown("---")
|
131 |
|
132 |
# ---------------------------- Security Audit Section ----------------------------
|
133 |
-
st.subheader("π Run Python Dependency Security Audit")
|
134 |
|
135 |
-
|
136 |
-
st.markdown(""
|
137 |
-
Keeping your project's dependencies secure is crucial. Use the button below to run a security audit on the Python packages used in this environment.
|
138 |
-
""")
|
139 |
|
140 |
-
# Button to trigger the security audit
|
141 |
if st.button('Run pip-audit for Security Check'):
|
142 |
with st.spinner('Running security audit...'):
|
143 |
-
# Simulate a delay for the audit process
|
144 |
time.sleep(2)
|
145 |
-
# Run the pip-audit command
|
146 |
result = subprocess.run(['pip-audit'], capture_output=True, text=True)
|
147 |
-
# Display the audit results
|
148 |
st.code(result.stdout)
|
149 |
st.success('Security audit completed!')
|
150 |
|
151 |
-
|
152 |
-
st.markdown("""
|
153 |
-
Note: The pip-audit tool checks your Python environment for packages with known vulnerabilities, referencing public CVE databases.
|
154 |
-
""")
|
155 |
-
|
156 |
-
# Add some spacing
|
157 |
st.markdown("---")
|
158 |
|
159 |
# ---------------------------- AI Pair Programming Recommendations ----------------------------
|
160 |
-
st.subheader("π€ AI Pair Programming: Security Recommendations")
|
161 |
|
|
|
162 |
st.markdown("""
|
163 |
Leveraging AI in pair programming can enhance code security and quality. Here are some recommendations:
|
164 |
|
@@ -168,13 +247,11 @@ Leveraging AI in pair programming can enhance code security and quality. Here ar
|
|
168 |
4. **Code Review Assistance**: AI can assist in code reviews by highlighting potential security issues and non-compliance with best practices.
|
169 |
5. **Secure Coding Practices**: AI can provide real-time suggestions for secure coding patterns and discourage the use of insecure functions.
|
170 |
""")
|
171 |
-
|
172 |
-
# Add some spacing
|
173 |
st.markdown("---")
|
174 |
|
175 |
# ---------------------------- Azure Deployment Information ----------------------------
|
176 |
-
st.subheader("βοΈ Azure Deployment Information")
|
177 |
|
|
|
178 |
st.markdown("""
|
179 |
While this demo does not include operational deployment, here's how you can deploy this application using Azure services:
|
180 |
|
@@ -196,14 +273,11 @@ While this demo does not include operational deployment, here's how you can depl
|
|
196 |
- Multi-model database service
|
197 |
- Low latency and high availability
|
198 |
""")
|
199 |
-
|
200 |
-
# Add some spacing
|
201 |
st.markdown("---")
|
202 |
|
203 |
# ---------------------------- Footer and Additional Resources ----------------------------
|
204 |
-
st.subheader("π Additional Resources")
|
205 |
|
206 |
-
|
207 |
st.markdown("""
|
208 |
- [Official Streamlit Documentation](https://docs.streamlit.io/)
|
209 |
- [pip-audit GitHub Repository](https://github.com/pypa/pip-audit)
|
@@ -212,21 +286,17 @@ st.markdown("""
|
|
212 |
- [Cybersecurity Best Practices by CISA](https://www.cisa.gov/cybersecurity-best-practices)
|
213 |
""")
|
214 |
|
215 |
-
|
216 |
-
st.markdown("""
|
217 |
-
If you have any questions or would like to contribute to this project, please reach out or submit a pull request on GitHub.
|
218 |
-
""")
|
219 |
-
|
220 |
-
# Add some spacing
|
221 |
-
st.markdown("---")
|
222 |
|
223 |
# ---------------------------- Sidebar Content ----------------------------
|
224 |
-
|
225 |
st.sidebar.title("Navigation")
|
226 |
st.sidebar.markdown("""
|
227 |
- [Introduction](#llms-for-cyber-security-state-of-the-art-surveys)
|
228 |
- [Survey Overview Table](#survey-overview-table)
|
229 |
- [Security Model Visualization](#security-model-visualization-with-mermaid)
|
|
|
|
|
230 |
- [Additional Insights](#additional-insights)
|
231 |
- [Security Audit](#run-python-dependency-security-audit)
|
232 |
- [AI Recommendations](#ai-pair-programming-security-recommendations)
|
@@ -234,7 +304,6 @@ st.sidebar.markdown("""
|
|
234 |
- [Additional Resources](#additional-resources)
|
235 |
""", unsafe_allow_html=True)
|
236 |
|
237 |
-
# Add an about section
|
238 |
st.sidebar.title("About")
|
239 |
st.sidebar.info("""
|
240 |
This Streamlit app was developed to demonstrate the intersection of Large Language Models and Cybersecurity, highlighting recent surveys and providing tools and recommendations for secure coding practices.
|
|
|
2 |
import pandas as pd
|
3 |
import subprocess
|
4 |
import time
|
5 |
+
import streamlit.components.v1 as components
|
6 |
|
7 |
# ---------------------------- Header and Introduction ----------------------------
|
8 |
|
9 |
+
st.set_page_config(page_title="LLMs for Cyber Security", page_icon="π", layout="wide", initial_sidebar_state="expanded")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
st.title("π LLMs for Cyber Security: State-of-the-Art Surveys")
|
11 |
+
st.markdown("This app is based on the paper: [Large Language Models for Cyber Security](https://arxiv.org/pdf/2405.04760v3). It showcases LLMs in the cybersecurity landscape, summarizing key surveys and insights.")
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
# ---------------------------- Data Preparation ----------------------------
|
14 |
|
|
|
15 |
data = {
|
16 |
+
"Reference": ["Motlagh et al.", "Divakaran et al.", "Yao et al.", "Yigit et al.", "Coelho et al.", "Novelli et al.", "LLM4Security"],
|
|
|
|
|
|
|
17 |
"Year": [2024, 2024, 2023, 2024, 2024, 2024, 2024],
|
18 |
+
"Scope": ["Security application", "Security application", "Security application, Security of LLM", "Security application, Security of LLM", "Security application", "Security application", "Security application"],
|
19 |
+
"Dimensions": ["Task", "Task", "Model, Task", "Task", "Task, Domain specific technique", "Task, Model, Domain specific technique", "Model, Task, Domain specific technique, Data"],
|
20 |
+
"Time frame": ["2022-2023", "2020-2024", "2019-2024", "2020-2024", "2021-2023", "2020-2024", "2020-2024"],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
"Papers": ["Not specified", "Not specified", 281, "Not specified", 19, "Not specified", 127]
|
22 |
}
|
|
|
|
|
23 |
df = pd.DataFrame(data)
|
24 |
|
25 |
# ---------------------------- Display Data Table ----------------------------
|
26 |
|
27 |
st.subheader("π Survey Overview Table")
|
|
|
|
|
28 |
st.dataframe(df, height=300)
|
|
|
|
|
29 |
st.markdown("---")
|
30 |
|
31 |
# ---------------------------- Mermaid Diagram Visualization ----------------------------
|
32 |
|
33 |
st.subheader("π‘οΈ Security Model Visualization with Mermaid")
|
34 |
|
|
|
35 |
mermaid_code = '''
|
36 |
graph TD;
|
37 |
A[LLMs in Security] --> B[Security Application]
|
|
|
41 |
E --> F[Data]
|
42 |
'''
|
43 |
|
44 |
+
# HTML component for Mermaid diagram
|
45 |
+
mermaid_html = f"""
|
46 |
+
<html>
|
47 |
+
<body>
|
48 |
+
<pre class="mermaid">
|
49 |
+
{mermaid_code}
|
50 |
+
</pre>
|
51 |
+
<script src="https://cdn.jsdelivr.net/npm/mermaid/dist/mermaid.min.js"></script>
|
52 |
+
<script>
|
53 |
+
mermaid.initialize({{ startOnLoad: true }});
|
54 |
+
</script>
|
55 |
+
</body>
|
56 |
+
</html>
|
57 |
+
"""
|
58 |
+
|
59 |
+
components.html(mermaid_html, height=300)
|
60 |
|
|
|
61 |
st.markdown("""
|
62 |
Figure: The diagram illustrates how Large Language Models (LLMs) are applied in security, highlighting the flow from general applications to specific tasks, models, domain-specific techniques, and data considerations.
|
63 |
""")
|
64 |
+
st.markdown("---")
|
65 |
|
66 |
+
# ---------------------------- Interactive Chart Example ----------------------------
|
67 |
+
|
68 |
+
st.subheader("π Interactive Chart Example")
|
69 |
+
|
70 |
+
# Sample data for the chart
|
71 |
+
chart_data = [
|
72 |
+
{"year": 2020, "papers": 50},
|
73 |
+
{"year": 2021, "papers": 80},
|
74 |
+
{"year": 2022, "papers": 120},
|
75 |
+
{"year": 2023, "papers": 200},
|
76 |
+
{"year": 2024, "papers": 250},
|
77 |
+
]
|
78 |
+
|
79 |
+
# HTML component for Chart.js
|
80 |
+
chart_html = f"""
|
81 |
+
<html>
|
82 |
+
<head>
|
83 |
+
<script src="https://cdn.jsdelivr.net/npm/chart.js"></script>
|
84 |
+
</head>
|
85 |
+
<body>
|
86 |
+
<canvas id="myChart" width="400" height="200"></canvas>
|
87 |
+
<script>
|
88 |
+
var ctx = document.getElementById('myChart').getContext('2d');
|
89 |
+
var myChart = new Chart(ctx, {{
|
90 |
+
type: 'line',
|
91 |
+
data: {{
|
92 |
+
labels: {[d['year'] for d in chart_data]},
|
93 |
+
datasets: [{{
|
94 |
+
label: 'Number of Papers',
|
95 |
+
data: {[d['papers'] for d in chart_data]},
|
96 |
+
borderColor: 'rgb(75, 192, 192)',
|
97 |
+
tension: 0.1
|
98 |
+
}}]
|
99 |
+
}},
|
100 |
+
options: {{
|
101 |
+
responsive: true,
|
102 |
+
scales: {{
|
103 |
+
y: {{
|
104 |
+
beginAtZero: true
|
105 |
+
}}
|
106 |
+
}}
|
107 |
+
}}
|
108 |
+
}});
|
109 |
+
</script>
|
110 |
+
</body>
|
111 |
+
</html>
|
112 |
+
"""
|
113 |
+
|
114 |
+
components.html(chart_html, height=300)
|
115 |
+
st.markdown("This interactive chart shows the growth in the number of papers on LLMs in cybersecurity over the years.")
|
116 |
+
st.markdown("---")
|
117 |
+
|
118 |
+
# ---------------------------- Interactive D3.js Visualization ----------------------------
|
119 |
+
|
120 |
+
st.subheader("π Interactive D3.js Visualization")
|
121 |
+
|
122 |
+
# Sample data for the D3 visualization
|
123 |
+
d3_data = [
|
124 |
+
{"name": "Task", "value": 30},
|
125 |
+
{"name": "Model", "value": 25},
|
126 |
+
{"name": "Domain-Specific", "value": 20},
|
127 |
+
{"name": "Data", "value": 15},
|
128 |
+
{"name": "Security of LLM", "value": 10},
|
129 |
+
]
|
130 |
+
|
131 |
+
# HTML component for D3.js visualization
|
132 |
+
d3_html = f"""
|
133 |
+
<html>
|
134 |
+
<head>
|
135 |
+
<script src="https://d3js.org/d3.v7.min.js"></script>
|
136 |
+
<style>
|
137 |
+
.bar {{ fill: steelblue; }}
|
138 |
+
.bar:hover {{ fill: brown; }}
|
139 |
+
</style>
|
140 |
+
</head>
|
141 |
+
<body>
|
142 |
+
<div id="d3-chart"></div>
|
143 |
+
<script>
|
144 |
+
const data = {d3_data};
|
145 |
+
const margin = {{top: 20, right: 20, bottom: 30, left: 40}};
|
146 |
+
const width = 400 - margin.left - margin.right;
|
147 |
+
const height = 200 - margin.top - margin.bottom;
|
148 |
+
|
149 |
+
const svg = d3.select("#d3-chart")
|
150 |
+
.append("svg")
|
151 |
+
.attr("width", width + margin.left + margin.right)
|
152 |
+
.attr("height", height + margin.top + margin.bottom)
|
153 |
+
.append("g")
|
154 |
+
.attr("transform", `translate(${{margin.left}},${{margin.top}})`);
|
155 |
+
|
156 |
+
const x = d3.scaleBand()
|
157 |
+
.range([0, width])
|
158 |
+
.padding(0.1);
|
159 |
+
|
160 |
+
const y = d3.scaleLinear()
|
161 |
+
.range([height, 0]);
|
162 |
+
|
163 |
+
x.domain(data.map(d => d.name));
|
164 |
+
y.domain([0, d3.max(data, d => d.value)]);
|
165 |
+
|
166 |
+
svg.selectAll(".bar")
|
167 |
+
.data(data)
|
168 |
+
.enter().append("rect")
|
169 |
+
.attr("class", "bar")
|
170 |
+
.attr("x", d => x(d.name))
|
171 |
+
.attr("width", x.bandwidth())
|
172 |
+
.attr("y", d => y(d.value))
|
173 |
+
.attr("height", d => height - y(d.value));
|
174 |
+
|
175 |
+
svg.append("g")
|
176 |
+
.attr("transform", `translate(0,${{height}})`)
|
177 |
+
.call(d3.axisBottom(x));
|
178 |
+
|
179 |
+
svg.append("g")
|
180 |
+
.call(d3.axisLeft(y));
|
181 |
+
</script>
|
182 |
+
</body>
|
183 |
+
</html>
|
184 |
+
"""
|
185 |
+
|
186 |
+
components.html(d3_html, height=300)
|
187 |
+
st.markdown("This D3.js visualization shows the distribution of different aspects in LLM cybersecurity research.")
|
188 |
st.markdown("---")
|
189 |
|
190 |
# ---------------------------- Scrollable Content for Additional Insights ----------------------------
|
|
|
191 |
|
192 |
+
st.subheader("π Additional Insights")
|
193 |
st.markdown("""
|
194 |
<style>
|
195 |
.scrollable-content {
|
|
|
199 |
border: 1px solid #ccc;
|
200 |
}
|
201 |
</style>
|
|
|
|
|
|
|
|
|
202 |
<div class="scrollable-content">
|
203 |
<h4>Survey Highlights:</h4>
|
204 |
<ul>
|
|
|
218 |
</ol>
|
219 |
</div>
|
220 |
""", unsafe_allow_html=True)
|
|
|
|
|
221 |
st.markdown("---")
|
222 |
|
223 |
# ---------------------------- Security Audit Section ----------------------------
|
|
|
224 |
|
225 |
+
st.subheader("π Run Python Dependency Security Audit")
|
226 |
+
st.markdown("Keeping your project's dependencies secure is crucial. Use the button below to run a security audit on the Python packages used in this environment.")
|
|
|
|
|
227 |
|
|
|
228 |
if st.button('Run pip-audit for Security Check'):
|
229 |
with st.spinner('Running security audit...'):
|
|
|
230 |
time.sleep(2)
|
|
|
231 |
result = subprocess.run(['pip-audit'], capture_output=True, text=True)
|
|
|
232 |
st.code(result.stdout)
|
233 |
st.success('Security audit completed!')
|
234 |
|
235 |
+
st.markdown("Note: The pip-audit tool checks your Python environment for packages with known vulnerabilities, referencing public CVE databases.")
|
|
|
|
|
|
|
|
|
|
|
236 |
st.markdown("---")
|
237 |
|
238 |
# ---------------------------- AI Pair Programming Recommendations ----------------------------
|
|
|
239 |
|
240 |
+
st.subheader("π€ AI Pair Programming: Security Recommendations")
|
241 |
st.markdown("""
|
242 |
Leveraging AI in pair programming can enhance code security and quality. Here are some recommendations:
|
243 |
|
|
|
247 |
4. **Code Review Assistance**: AI can assist in code reviews by highlighting potential security issues and non-compliance with best practices.
|
248 |
5. **Secure Coding Practices**: AI can provide real-time suggestions for secure coding patterns and discourage the use of insecure functions.
|
249 |
""")
|
|
|
|
|
250 |
st.markdown("---")
|
251 |
|
252 |
# ---------------------------- Azure Deployment Information ----------------------------
|
|
|
253 |
|
254 |
+
st.subheader("βοΈ Azure Deployment Information")
|
255 |
st.markdown("""
|
256 |
While this demo does not include operational deployment, here's how you can deploy this application using Azure services:
|
257 |
|
|
|
273 |
- Multi-model database service
|
274 |
- Low latency and high availability
|
275 |
""")
|
|
|
|
|
276 |
st.markdown("---")
|
277 |
|
278 |
# ---------------------------- Footer and Additional Resources ----------------------------
|
|
|
279 |
|
280 |
+
st.subheader("π Additional Resources")
|
281 |
st.markdown("""
|
282 |
- [Official Streamlit Documentation](https://docs.streamlit.io/)
|
283 |
- [pip-audit GitHub Repository](https://github.com/pypa/pip-audit)
|
|
|
286 |
- [Cybersecurity Best Practices by CISA](https://www.cisa.gov/cybersecurity-best-practices)
|
287 |
""")
|
288 |
|
289 |
+
st.markdown("If you have any questions or would like to contribute to this project, please reach out or submit a pull request on GitHub.")
|
|
|
|
|
|
|
|
|
|
|
|
|
290 |
|
291 |
# ---------------------------- Sidebar Content ----------------------------
|
292 |
+
|
293 |
st.sidebar.title("Navigation")
|
294 |
st.sidebar.markdown("""
|
295 |
- [Introduction](#llms-for-cyber-security-state-of-the-art-surveys)
|
296 |
- [Survey Overview Table](#survey-overview-table)
|
297 |
- [Security Model Visualization](#security-model-visualization-with-mermaid)
|
298 |
+
- [Interactive Chart](#interactive-chart-example)
|
299 |
+
- [D3.js Visualization](#interactive-d3js-visualization)
|
300 |
- [Additional Insights](#additional-insights)
|
301 |
- [Security Audit](#run-python-dependency-security-audit)
|
302 |
- [AI Recommendations](#ai-pair-programming-security-recommendations)
|
|
|
304 |
- [Additional Resources](#additional-resources)
|
305 |
""", unsafe_allow_html=True)
|
306 |
|
|
|
307 |
st.sidebar.title("About")
|
308 |
st.sidebar.info("""
|
309 |
This Streamlit app was developed to demonstrate the intersection of Large Language Models and Cybersecurity, highlighting recent surveys and providing tools and recommendations for secure coding practices.
|