import streamlit as st import os import glob import re import base64 import pytz import time import streamlit.components.v1 as components from urllib.parse import quote from gradio_client import Client from datetime import datetime # Page configuration Site_Name = 'AI Knowledge Tree Builder ๐๐ฟ Grow Smarter with Every Click' title = "๐ณโจAI Knowledge Tree Builder๐ ๏ธ๐ค" helpURL = 'https://huggingface.co/spaces/awacke1/AIKnowledgeTreeBuilder/' bugURL = 'https://huggingface.co/spaces/awacke1/AIKnowledgeTreeBuilder/' icons = '๐ณโจ๐ ๏ธ๐ค' SidebarOutline = """๐ณ๐ค Designed with the following tenets: 1 ๐ฑ **Portability** - Universal access via any device & link sharing 2. โก **Speed of Build** - Rapid deployments < 2min to production 3. ๐ **Linkiness** - Programmatic access to AI knowledge sources 4. ๐ฏ **Abstractive** - Core stays lean isolating high-maintenance components 5. ๐ง **Memory** - Shareable flows deep-linked research paths 6. ๐ค **Personalized** - Rapidly adapts knowledge base to user needs 7. ๐ฆ **Living Brevity** - Easily cloneable, self modify data public share results. """ st.set_page_config( page_title=title, page_icon=icons, layout="wide", initial_sidebar_state="auto", menu_items={ 'Get Help': helpURL, 'Report a bug': bugURL, 'About': title } ) st.sidebar.markdown(SidebarOutline) # Initialize session state variables if 'selected_file' not in st.session_state: st.session_state.selected_file = None if 'view_mode' not in st.session_state: st.session_state.view_mode = 'view' if 'files' not in st.session_state: st.session_state.files = [] # --- MoE System Prompts Setup --- moe_prompts_data = """1. Create a python streamlit app.py demonstrating the topic and show top 3 arxiv papers discussing this as reference. 2. Create a python gradio app.py demonstrating the topic and show top 3 arxiv papers discussing this as reference. 3. Create a mermaid model of the knowledge tree around concepts and parts of this topic. Use appropriate emojis. 4. Create a top three list of tools and techniques for this topic with markdown and emojis. 5. Create a specification in markdown outline with emojis for this topic. 6. Create an image generation prompt for this with Bosch and Turner oil painting influences. 7. Generate an image which describes this as a concept and area of study. 8. List top ten glossary terms with emojis related to this topic as markdown outline.""" # Split the data by lines and remove the numbering/period (assume each line has "number. " at the start) moe_prompts_list = [line.split('. ', 1)[1].strip() for line in moe_prompts_data.splitlines() if '. ' in line] moe_options = [""] + moe_prompts_list # blank is default # Place the selectbox at the top of the app; store selection in session_state key "selected_moe" selected_moe = st.selectbox("Choose a MoE system prompt", options=moe_options, index=0, key="selected_moe") # --- Utility Functions --- def get_display_name(filename): """Extract text from parentheses or return filename as is.""" match = re.search(r'\((.*?)\)', filename) if match: return match.group(1) return filename def get_time_display(filename): """Extract just the time portion from the filename.""" time_match = re.match(r'(\d{2}\d{2}[AP]M)', filename) if time_match: return time_match.group(1) return filename def sanitize_filename(text): """Create a safe filename from text while preserving spaces.""" safe_text = re.sub(r'[^\w\s-]', ' ', text) safe_text = re.sub(r'\s+', ' ', safe_text) safe_text = safe_text.strip() return safe_text[:50] def generate_timestamp_filename(query): """Generate filename with format: 1103AM 11032024 (Query).md""" central = pytz.timezone('US/Central') current_time = datetime.now(central) time_str = current_time.strftime("%I%M%p") date_str = current_time.strftime("%m%d%Y") safe_query = sanitize_filename(query) filename = f"{time_str} {date_str} ({safe_query}).md" return filename def delete_file(file_path): """Delete a file and return success status.""" try: os.remove(file_path) return True except Exception as e: st.error(f"Error deleting file: {e}") return False def save_ai_interaction(query, ai_result, is_rerun=False): """Save AI interaction to a markdown file with new filename format.""" filename = generate_timestamp_filename(query) if is_rerun: content = f"""# Rerun Query Original file content used for rerun: {query} # AI Response (Fun Version) {ai_result} """ else: content = f"""# Query: {query} ## AI Response {ai_result} """ try: with open(filename, 'w', encoding='utf-8') as f: f.write(content) return filename except Exception as e: st.error(f"Error saving file: {e}") return None def get_file_download_link(file_path): """Generate a base64 download link for a file.""" try: with open(file_path, 'r', encoding='utf-8') as f: content = f.read() b64 = base64.b64encode(content.encode()).decode() filename = os.path.basename(file_path) return f'<a href="data:text/markdown;base64,{b64}" download="{filename}">{get_display_name(filename)}</a>' except Exception as e: st.error(f"Error creating download link: {e}") return None # --- New Functions for Markdown File Parsing and Link Tree --- def clean_item_text(line): """ Remove emoji and numbered prefix from a line. E.g., "๐ง 1. Low-level system integrations compilers Cplusplus" becomes "Low-level system integrations compilers Cplusplus". Also remove any bold markdown markers. """ # Remove leading emoji and number+period cleaned = re.sub(r'^[^\w]*(\d+\.\s*)', '', line) # Remove any remaining emoji (simple unicode range) and ** markers cleaned = re.sub(r'[\U0001F300-\U0001FAFF]', '', cleaned) cleaned = cleaned.replace("**", "") return cleaned.strip() def clean_header_text(header_line): """ Extract header text from a markdown header line. E.g., "๐ง **Systems, Infrastructure & Low-Level Engineering**" becomes "Systems, Infrastructure & Low-Level Engineering". """ match = re.search(r'\*\*(.*?)\*\*', header_line) if match: return match.group(1).strip() return header_line.strip() def parse_markdown_sections(md_text): """ Parse markdown text into sections. Each section starts with a header line containing bold text. Returns a list of dicts with keys: 'header' and 'items' (list of lines). Skips any content before the first header. """ sections = [] current_section = None lines = md_text.splitlines() for line in lines: if line.strip() == "": continue # Check if line is a header (contains bold markdown and an emoji) if '**' in line: header = clean_header_text(line) current_section = {'header': header, 'raw': line, 'items': []} sections.append(current_section) elif current_section is not None: # Only add lines that appear to be list items (start with an emoji and number) if re.match(r'^[^\w]*\d+\.\s+', line): current_section['items'].append(line) else: if current_section['items']: current_section['items'][-1] += " " + line.strip() else: current_section['items'].append(line) return sections def display_section_items(items): """ Display list of items as links. For each item, clean the text and generate search links using your original link set. If a MoE system prompt is selected (non-blank), prepend itโwith three spacesโbefore the cleaned text. """ # Retrieve the current selected MoE prompt (if any) moe_prefix = st.session_state.get("selected_moe", "") search_urls = { "๐๐ArXiv": lambda k: f"/?q={quote(k)}", "๐ฎ<sup>Google</sup>": lambda k: f"https://www.google.com/search?q={quote(k)}", "๐บ<sup>Youtube</sup>": lambda k: f"https://www.youtube.com/results?search_query={quote(k)}", "๐ญ<sup>Bing</sup>": lambda k: f"https://www.bing.com/search?q={quote(k)}", "๐ก<sup>Claude</sup>": lambda k: f"https://claude.ai/new?q={quote(k)}", "๐ฑX": lambda k: f"https://twitter.com/search?q={quote(k)}", "๐ค<sup>GPT</sup>": lambda k: f"https://chatgpt.com/?model=o3-mini-high&q={quote(k)}", } for item in items: cleaned_text = clean_item_text(item) # If a MoE prompt is selected (non-blank), prepend it (with three spaces) to the cleaned text. final_query = (moe_prefix + " " if moe_prefix else "") + cleaned_text links_md = ' '.join([f"[{emoji}]({url(final_query)})" for emoji, url in search_urls.items()]) st.markdown(f"- **{cleaned_text}** {links_md}", unsafe_allow_html=True) def display_markdown_tree(): """ Allow user to upload a .md file or load README.md. Parse the markdown into sections and display each section in a collapsed expander with the original markdown and a link tree of items. """ st.markdown("## Markdown Tree Parser") uploaded_file = st.file_uploader("Upload a Markdown file", type=["md"]) if uploaded_file is not None: md_content = uploaded_file.read().decode("utf-8") else: if os.path.exists("README.md"): with open("README.md", "r", encoding="utf-8") as f: md_content = f.read() else: st.info("No Markdown file uploaded and README.md not found.") return sections = parse_markdown_sections(md_content) if not sections: st.info("No sections found in the markdown file.") return for sec in sections: with st.expander(sec['header'], expanded=False): st.markdown(f"**Original Markdown:**\n\n{sec['raw']}\n") if sec['items']: st.markdown("**Link Tree:**") display_section_items(sec['items']) else: st.write("No items found in this section.") # --- Existing AI and File Management Functions --- def search_arxiv(query): st.write("Performing AI Lookup...") client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern") result1 = client.predict( prompt=query, llm_model_picked="mistralai/Mixtral-8x7B-Instruct-v0.1", stream_outputs=True, api_name="/ask_llm" ) st.markdown("### Mixtral-8x7B-Instruct-v0.1 Result") st.markdown(result1) result2 = client.predict( prompt=query, llm_model_picked="mistralai/Mistral-7B-Instruct-v0.2", stream_outputs=True, api_name="/ask_llm" ) st.markdown("### Mistral-7B-Instruct-v0.2 Result") st.markdown(result2) combined_result = f"{result1}\n\n{result2}" return combined_result @st.cache_resource def SpeechSynthesis(result): documentHTML5 = ''' <!DOCTYPE html> <html> <head> <title>Read It Aloud</title> <script type="text/javascript"> function readAloud() { const text = document.getElementById("textArea").value; const speech = new SpeechSynthesisUtterance(text); window.speechSynthesis.speak(speech); } </script> </head> <body> <h1>๐ Read It Aloud</h1> <textarea id="textArea" rows="10" cols="80"> ''' documentHTML5 += result documentHTML5 += ''' </textarea> <br> <button onclick="readAloud()">๐ Read Aloud</button> </body> </html> ''' components.html(documentHTML5, width=1280, height=300) def display_file_content(file_path): """Display file content with editing capabilities.""" try: with open(file_path, 'r', encoding='utf-8') as f: content = f.read() if st.session_state.view_mode == 'view': st.markdown(content) else: edited_content = st.text_area( "Edit content", content, height=400, key=f"edit_{os.path.basename(file_path)}" ) if st.button("Save Changes", key=f"save_{os.path.basename(file_path)}"): try: with open(file_path, 'w', encoding='utf-8') as f: f.write(edited_content) st.success(f"Successfully saved changes to {file_path}") except Exception as e: st.error(f"Error saving changes: {e}") except Exception as e: st.error(f"Error reading file: {e}") def file_management_sidebar(): """Redesigned sidebar with improved layout and additional functionality.""" st.sidebar.title("๐ File Management") md_files = [file for file in glob.glob("*.md") if file.lower() != 'readme.md'] md_files.sort() st.session_state.files = md_files if md_files: st.sidebar.markdown("### Saved Files") for idx, file in enumerate(md_files): st.sidebar.markdown("---") st.sidebar.text(get_time_display(file)) download_link = get_file_download_link(file) if download_link: st.sidebar.markdown(download_link, unsafe_allow_html=True) col1, col2, col3, col4 = st.sidebar.columns(4) with col1: if st.button("๐View", key=f"view_{idx}"): st.session_state.selected_file = file st.session_state.view_mode = 'view' with col2: if st.button("โ๏ธEdit", key=f"edit_{idx}"): st.session_state.selected_file = file st.session_state.view_mode = 'edit' with col3: if st.button("๐Run", key=f"rerun_{idx}"): try: with open(file, 'r', encoding='utf-8') as f: content = f.read() rerun_prefix = """For the markdown below reduce the text to a humorous fun outline with emojis and markdown outline levels in outline that convey all the facts and adds wise quotes and funny statements to engage the reader: """ full_prompt = rerun_prefix + content ai_result = perform_ai_lookup(full_prompt) saved_file = save_ai_interaction(content, ai_result, is_rerun=True) if saved_file: st.success(f"Created fun version in {saved_file}") st.session_state.selected_file = saved_file st.session_state.view_mode = 'view' except Exception as e: st.error(f"Error during rerun: {e}") with col4: if st.button("๐๏ธDelete", key=f"delete_{idx}"): if delete_file(file): st.success(f"Deleted {file}") st.rerun() else: st.error(f"Failed to delete {file}") st.sidebar.markdown("---") if st.sidebar.button("๐ Create New Note"): filename = generate_timestamp_filename("New Note") with open(filename, 'w', encoding='utf-8') as f: f.write("# New Markdown File\n") st.sidebar.success(f"Created: {filename}") st.session_state.selected_file = filename st.session_state.view_mode = 'edit' else: st.sidebar.write("No markdown files found.") if st.sidebar.button("๐ Create First Note"): filename = generate_timestamp_filename("New Note") with open(filename, 'w', encoding='utf-8') as f: f.write("# New Markdown File\n") st.sidebar.success(f"Created: {filename}") st.session_state.selected_file = filename st.session_state.view_mode = 'edit' def perform_ai_lookup(query): start_time = time.strftime("%Y-%m-%d %H:%M:%S") client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern") response1 = client.predict( query, 20, "Semantic Search", "mistralai/Mixtral-8x7B-Instruct-v0.1", api_name="/update_with_rag_md" ) Question = '### ๐ ' + query + '\r\n' References = response1[0] ReferenceLinks = "" results = "" RunSecondQuery = True if RunSecondQuery: response2 = client.predict( query, "mistralai/Mixtral-8x7B-Instruct-v0.1", True, api_name="/ask_llm" ) if len(response2) > 10: Answer = response2 SpeechSynthesis(Answer) results = Question + '\r\n' + Answer + '\r\n' + References + '\r\n' + ReferenceLinks st.markdown(results) st.write('๐Run of Multi-Agent System Paper Summary Spec is Complete') end_time = time.strftime("%Y-%m-%d %H:%M:%S") start_timestamp = time.mktime(time.strptime(start_time, "%Y-%m-%d %H:%M:%S")) end_timestamp = time.mktime(time.strptime(end_time, "%Y-%m-%d %H:%M:%S")) elapsed_seconds = end_timestamp - start_timestamp st.write(f"Start time: {start_time}") st.write(f"Finish time: {end_time}") st.write(f"Elapsed time: {elapsed_seconds:.2f} seconds") filename = generate_filename(query, "md") create_file(filename, query, results) return results def generate_filename(prompt, file_type): central = pytz.timezone('US/Central') safe_date_time = datetime.now(central).strftime("%m%d_%H%M") safe_prompt = re.sub(r'\W+', '_', prompt)[:90] return f"{safe_date_time}_{safe_prompt}.{file_type}" def create_file(filename, prompt, response): with open(filename, 'w', encoding='utf-8') as file: file.write(prompt + "\n\n" + response) # --- Main Application --- def main(): st.markdown("### AI Knowledge Tree Builder ๐ง ๐ฑ Cultivate Your AI Mindscape!") query_params = st.query_params query = query_params.get('q', '') show_initial_content = True if query: show_initial_content = False st.write(f"### Search query received: {query}") try: ai_result = perform_ai_lookup(query) saved_file = save_ai_interaction(query, ai_result) if saved_file: st.success(f"Saved interaction to {saved_file}") st.session_state.selected_file = saved_file st.session_state.view_mode = 'view' except Exception as e: st.error(f"Error during AI lookup: {e}") file_management_sidebar() if st.session_state.selected_file: show_initial_content = False if os.path.exists(st.session_state.selected_file): st.markdown(f"### Current File: {st.session_state.selected_file}") display_file_content(st.session_state.selected_file) else: st.error("Selected file no longer exists.") st.session_state.selected_file = None st.rerun() if show_initial_content: display_markdown_tree() if __name__ == "__main__": main()