Spaces:
Running
Running
mateusz-aveni
commited on
Commit
Β·
6c63009
1
Parent(s):
d048ec3
Add borda count instead of an average.
Browse files
app.py
CHANGED
@@ -16,7 +16,7 @@ initialize_file(project_repo=RESULTS_REPO, file_path=EVAL_RESULTS_PATH)
|
|
16 |
LEADERBOARD_DF = get_leaderboard_df(f"{EVAL_RESULTS_PATH}/results.tsv")
|
17 |
|
18 |
columns = LEADERBOARD_DF.columns.tolist()
|
19 |
-
demo = gr.Blocks()
|
20 |
|
21 |
# Choices for the filters
|
22 |
unselectable_columns = ["model"]
|
@@ -39,64 +39,71 @@ filter_skill_choices = [
|
|
39 |
|
40 |
with demo:
|
41 |
gr.HTML(TITLE)
|
42 |
-
|
|
|
|
|
|
|
|
|
|
|
43 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
44 |
-
with gr.TabItem("π
|
45 |
-
with gr.
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
)
|
69 |
-
|
70 |
-
with gr.Row():
|
71 |
-
filter_skills = gr.CheckboxGroup(
|
72 |
-
label="Select Skills",
|
73 |
-
choices=filter_skill_choices,
|
74 |
-
value=filter_skill_choices,
|
75 |
-
interactive=True,
|
76 |
-
elem_id="filter-language"
|
77 |
-
)
|
78 |
-
with gr.Column():
|
79 |
-
select_all_skills = gr.Button(
|
80 |
-
value="Select all skills",
|
81 |
-
elem_id="select-all-skills",
|
82 |
-
interactive=True,
|
83 |
-
size="sm",
|
84 |
-
)
|
85 |
-
deselect_all_skills = gr.Button(
|
86 |
-
value="Deselect all skills",
|
87 |
-
elem_id="deselect-all-skills",
|
88 |
-
interactive=True,
|
89 |
-
size="sm",
|
90 |
-
)
|
91 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
with gr.Column():
|
93 |
-
|
94 |
-
value=
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
elem_id="leaderboard-title"
|
99 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
|
101 |
with gr.Row():
|
102 |
with gr.Accordion("π Citation", open=False):
|
@@ -110,31 +117,49 @@ with demo:
|
|
110 |
|
111 |
|
112 |
def update_leaderboard(filter_task_items, filter_skills_items):
|
|
|
|
|
|
|
|
|
113 |
filtered_df: pd.DataFrame = LEADERBOARD_DF.copy()
|
114 |
|
115 |
filtered_df = filtered_df[filtered_df["task"].isin(filter_task_items)]
|
116 |
-
|
|
|
|
|
|
|
117 |
|
118 |
cols = ["model", "task", "score"]
|
119 |
filtered_df = filtered_df[cols]
|
120 |
|
121 |
-
#
|
122 |
current_task_items = filtered_df["task"].unique().tolist()
|
123 |
-
filtered_df
|
124 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
125 |
|
126 |
# Reorder columns
|
127 |
-
filtered_df = filtered_df[["model", "
|
|
|
128 |
|
129 |
-
# Sort by
|
130 |
-
filtered_df = filtered_df.sort_values(by="
|
131 |
|
132 |
-
# Rename
|
133 |
-
filtered_df = filtered_df.rename(columns={
|
|
|
|
|
|
|
|
|
134 |
|
135 |
# Round values
|
136 |
for col in filtered_df.columns:
|
137 |
-
if col not in ["model"]:
|
138 |
filtered_df[col] = filtered_df[col].round(2)
|
139 |
|
140 |
return filtered_df
|
@@ -149,9 +174,7 @@ with demo:
|
|
149 |
)
|
150 |
|
151 |
select_all_tasks.click(lambda: filter_task_choices, inputs=[], outputs=[filter_task])
|
152 |
-
deselect_all_tasks.click(lambda: [], inputs=[], outputs=[filter_task])
|
153 |
select_all_skills.click(lambda: filter_skill_choices, inputs=[], outputs=[filter_skills])
|
154 |
-
deselect_all_skills.click(lambda: [], inputs=[], outputs=[filter_skills])
|
155 |
|
156 |
gr.Blocks.load(
|
157 |
block=demo,
|
|
|
16 |
LEADERBOARD_DF = get_leaderboard_df(f"{EVAL_RESULTS_PATH}/results.tsv")
|
17 |
|
18 |
columns = LEADERBOARD_DF.columns.tolist()
|
19 |
+
demo = gr.Blocks(theme=gr.themes.Monochrome())
|
20 |
|
21 |
# Choices for the filters
|
22 |
unselectable_columns = ["model"]
|
|
|
39 |
|
40 |
with demo:
|
41 |
gr.HTML(TITLE)
|
42 |
+
gr.Markdown(
|
43 |
+
"This is a collection of AveniBench results - a permissively licensed benchmark that tests a group of six key "
|
44 |
+
"finance-related skills: tabular reasoning, numerical reasoning, question answering, long context modelling, "
|
45 |
+
"summarisation and dialogue.", elem_classes="markdown-text",
|
46 |
+
)
|
47 |
+
gr.Markdown("Open an issue or contact the Authors to include your model into the leaderboard.", elem_classes="markdown-text")
|
48 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
49 |
+
with gr.TabItem("π
AveniBench Benchmark", elem_id="llm-benchmark-tab-table", id=0):
|
50 |
+
with gr.Row():
|
51 |
+
filter_task = gr.CheckboxGroup(
|
52 |
+
label="Select Tasks",
|
53 |
+
choices=filter_task_choices,
|
54 |
+
interactive=True,
|
55 |
+
value=filter_task_choices,
|
56 |
+
elem_id="filter_task",
|
57 |
+
scale=6
|
58 |
+
)
|
59 |
+
with gr.Column():
|
60 |
+
select_all_tasks = gr.Button(
|
61 |
+
value="Select all tasks",
|
62 |
+
elem_id="select-all-tasks",
|
63 |
+
size="sm",
|
64 |
+
scale=1
|
65 |
+
)
|
66 |
+
deselect_all_tasks = gr.ClearButton(
|
67 |
+
filter_task,
|
68 |
+
value="Deselect all tasks",
|
69 |
+
elem_id="deselect-all-tasks",
|
70 |
+
size="sm",
|
71 |
+
scale=1
|
72 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
|
74 |
+
with gr.Row():
|
75 |
+
filter_skills = gr.CheckboxGroup(
|
76 |
+
label="Select Skills",
|
77 |
+
choices=filter_skill_choices,
|
78 |
+
value=filter_skill_choices,
|
79 |
+
interactive=True,
|
80 |
+
elem_id="filter-language",
|
81 |
+
scale=6
|
82 |
+
)
|
83 |
with gr.Column():
|
84 |
+
select_all_skills = gr.Button(
|
85 |
+
value="Select all skills",
|
86 |
+
elem_id="select-all-skills",
|
87 |
+
size="sm",
|
88 |
+
scale=1
|
|
|
89 |
)
|
90 |
+
deselect_all_skills = gr.ClearButton(
|
91 |
+
filter_skills,
|
92 |
+
value="Deselect all skills",
|
93 |
+
elem_id="deselect-all-skills",
|
94 |
+
size="sm",
|
95 |
+
scale=1
|
96 |
+
)
|
97 |
+
|
98 |
+
with gr.Column():
|
99 |
+
leaderboard_table = gr.Dataframe(
|
100 |
+
value=LEADERBOARD_DF,
|
101 |
+
interactive=False,
|
102 |
+
type="pandas",
|
103 |
+
visible=True,
|
104 |
+
label="Leaderboard",
|
105 |
+
elem_id="leaderboard-title",
|
106 |
+
)
|
107 |
|
108 |
with gr.Row():
|
109 |
with gr.Accordion("π Citation", open=False):
|
|
|
117 |
|
118 |
|
119 |
def update_leaderboard(filter_task_items, filter_skills_items):
|
120 |
+
# Empty tasks/skills set:
|
121 |
+
if not filter_task_items or not filter_skills_items:
|
122 |
+
return pd.DataFrame([], columns=["model", "Borda Count"])
|
123 |
+
|
124 |
filtered_df: pd.DataFrame = LEADERBOARD_DF.copy()
|
125 |
|
126 |
filtered_df = filtered_df[filtered_df["task"].isin(filter_task_items)]
|
127 |
+
|
128 |
+
filtered_df = filtered_df[filtered_df["skill"].apply(
|
129 |
+
lambda x: any(skill in x for skill in filter_skills_items)
|
130 |
+
)]
|
131 |
|
132 |
cols = ["model", "task", "score"]
|
133 |
filtered_df = filtered_df[cols]
|
134 |
|
135 |
+
# Calculate borda count
|
136 |
current_task_items = filtered_df["task"].unique().tolist()
|
137 |
+
filtered_df["borda-score"] = 0
|
138 |
+
for task in current_task_items:
|
139 |
+
filtered_df["borda-score"] += (filtered_df['score'].where(filtered_df["task"] == task)
|
140 |
+
.rank(ascending=True, method="max") - 1).fillna(0)
|
141 |
+
|
142 |
+
filtered_df = filtered_df.pivot(index="model", columns="task", values=["borda-score", "score"]).reset_index()
|
143 |
+
filtered_df["borda-score-sum"] = filtered_df["borda-score"].sum(axis=1)
|
144 |
+
filtered_df["borda-count"] = filtered_df["borda-score-sum"].rank(ascending=False, method="min")
|
145 |
|
146 |
# Reorder columns
|
147 |
+
filtered_df = filtered_df[["model", "borda-count", "score"]]
|
148 |
+
filtered_df.columns = ["model", "borda-count"] + sorted(filtered_df.columns.droplevel(level=0)[2:].tolist())
|
149 |
|
150 |
+
# Sort by borda count
|
151 |
+
filtered_df = filtered_df.sort_values(by="borda-count", ascending=True)
|
152 |
|
153 |
+
# Rename borda count with symbol
|
154 |
+
filtered_df = filtered_df.rename(columns={
|
155 |
+
"borda-count": "Borda Count",
|
156 |
+
"MultiHiertt EASY": "MHiertt EASY",
|
157 |
+
"MultiHiertt HARD": "MHiertt HARD",
|
158 |
+
})
|
159 |
|
160 |
# Round values
|
161 |
for col in filtered_df.columns:
|
162 |
+
if col not in ["model", "Borda Count"]:
|
163 |
filtered_df[col] = filtered_df[col].round(2)
|
164 |
|
165 |
return filtered_df
|
|
|
174 |
)
|
175 |
|
176 |
select_all_tasks.click(lambda: filter_task_choices, inputs=[], outputs=[filter_task])
|
|
|
177 |
select_all_skills.click(lambda: filter_skill_choices, inputs=[], outputs=[filter_skills])
|
|
|
178 |
|
179 |
gr.Blocks.load(
|
180 |
block=demo,
|