import logging from pathlib import Path from typing import Union import pandas as pd import torch from tensordict import TensorDict from torch.utils.data.dataset import Dataset from mmaudio.utils.dist_utils import local_rank log = logging.getLogger() class ExtractedVGG(Dataset): def __init__( self, tsv_path: Union[str, Path], *, premade_mmap_dir: Union[str, Path], data_dim: dict[str, int], ): super().__init__() self.data_dim = data_dim self.df_list = pd.read_csv(tsv_path, sep='\t').to_dict('records') self.ids = [d['id'] for d in self.df_list] log.info(f'Loading precomputed mmap from {premade_mmap_dir}') # load precomputed memory mapped tensors premade_mmap_dir = Path(premade_mmap_dir) td = TensorDict.load_memmap(premade_mmap_dir) log.info(f'Loaded precomputed mmap from {premade_mmap_dir}') self.mean = td['mean'] self.std = td['std'] self.clip_features = td['clip_features'] self.sync_features = td['sync_features'] self.text_features = td['text_features'] if local_rank == 0: log.info(f'Loaded {len(self)} samples.') log.info(f'Loaded mean: {self.mean.shape}.') log.info(f'Loaded std: {self.std.shape}.') log.info(f'Loaded clip_features: {self.clip_features.shape}.') log.info(f'Loaded sync_features: {self.sync_features.shape}.') log.info(f'Loaded text_features: {self.text_features.shape}.') assert self.mean.shape[1] == self.data_dim['latent_seq_len'], \ f'{self.mean.shape[1]} != {self.data_dim["latent_seq_len"]}' assert self.std.shape[1] == self.data_dim['latent_seq_len'], \ f'{self.std.shape[1]} != {self.data_dim["latent_seq_len"]}' assert self.clip_features.shape[1] == self.data_dim['clip_seq_len'], \ f'{self.clip_features.shape[1]} != {self.data_dim["clip_seq_len"]}' assert self.sync_features.shape[1] == self.data_dim['sync_seq_len'], \ f'{self.sync_features.shape[1]} != {self.data_dim["sync_seq_len"]}' assert self.text_features.shape[1] == self.data_dim['text_seq_len'], \ f'{self.text_features.shape[1]} != {self.data_dim["text_seq_len"]}' assert self.clip_features.shape[-1] == self.data_dim['clip_dim'], \ f'{self.clip_features.shape[-1]} != {self.data_dim["clip_dim"]}' assert self.sync_features.shape[-1] == self.data_dim['sync_dim'], \ f'{self.sync_features.shape[-1]} != {self.data_dim["sync_dim"]}' assert self.text_features.shape[-1] == self.data_dim['text_dim'], \ f'{self.text_features.shape[-1]} != {self.data_dim["text_dim"]}' self.video_exist = torch.tensor(1, dtype=torch.bool) self.text_exist = torch.tensor(1, dtype=torch.bool) def compute_latent_stats(self) -> tuple[torch.Tensor, torch.Tensor]: latents = self.mean return latents.mean(dim=(0, 1)), latents.std(dim=(0, 1)) def get_memory_mapped_tensor(self) -> TensorDict: td = TensorDict({ 'mean': self.mean, 'std': self.std, 'clip_features': self.clip_features, 'sync_features': self.sync_features, 'text_features': self.text_features, }) return td def __getitem__(self, idx: int) -> dict[str, torch.Tensor]: data = { 'id': self.df_list[idx]['id'], 'a_mean': self.mean[idx], 'a_std': self.std[idx], 'clip_features': self.clip_features[idx], 'sync_features': self.sync_features[idx], 'text_features': self.text_features[idx], 'caption': self.df_list[idx]['label'], 'video_exist': self.video_exist, 'text_exist': self.text_exist, } return data def __len__(self): return len(self.ids)