defaults: - data: base - eval_data: base - override hydra/job_logging: custom-simplest - _self_ hydra: run: dir: ./output/${exp_id} output_subdir: ${now:%Y-%m-%d_%H-%M-%S}-hydra enable_email: False model: small_16k exp_id: default debug: False cudnn_benchmark: True compile: True amp: True weights: null checkpoint: null seed: 14159265 num_workers: 10 # per-GPU pin_memory: False # set to True if your system can handle it, i.e., have enough memory # NOTE: This DOSE NOT affect the model during inference in any way # they are just for the dataloader to fill in the missing data in multi-modal loading # to change the sequence length for the model, see networks.py data_dim: text_seq_len: 77 clip_dim: 1024 sync_dim: 768 text_dim: 1024 # ema configuration ema: enable: True sigma_rels: [0.05, 0.1] update_every: 1 checkpoint_every: 5_000 checkpoint_folder: ${hydra:run.dir}/ema_ckpts default_output_sigma: 0.05 # sampling sampling: mean: 0.0 scale: 1.0 min_sigma: 0.0 method: euler num_steps: 25 # classifier-free guidance null_condition_probability: 0.1 cfg_strength: 4.5 # checkpoint paths to external modules vae_16k_ckpt: ./ext_weights/v1-16.pth vae_44k_ckpt: ./ext_weights/v1-44.pth bigvgan_vocoder_ckpt: ./ext_weights/best_netG.pt synchformer_ckpt: ./ext_weights/synchformer_state_dict.pth