import json import logging import os import random import numpy as np import torch from hydra.core.hydra_config import HydraConfig from omegaconf import DictConfig, open_dict from tqdm import tqdm from mmaudio.data.data_setup import setup_test_datasets from mmaudio.runner import Runner from mmaudio.utils.dist_utils import info_if_rank_zero from mmaudio.utils.logger import TensorboardLogger local_rank = int(os.environ['LOCAL_RANK']) world_size = int(os.environ['WORLD_SIZE']) def sample(cfg: DictConfig): # initial setup num_gpus = world_size run_dir = HydraConfig.get().run.dir # wrap python logger with a tensorboard logger log = TensorboardLogger(cfg.exp_id, run_dir, logging.getLogger(), is_rank0=(local_rank == 0), enable_email=cfg.enable_email and not cfg.debug) info_if_rank_zero(log, f'All configuration: {cfg}') info_if_rank_zero(log, f'Number of GPUs detected: {num_gpus}') # cuda setup torch.cuda.set_device(local_rank) torch.backends.cudnn.benchmark = cfg.cudnn_benchmark # number of dataloader workers info_if_rank_zero(log, f'Number of dataloader workers (per GPU): {cfg.num_workers}') # Set seeds to ensure the same initialization torch.manual_seed(cfg.seed) np.random.seed(cfg.seed) random.seed(cfg.seed) # setting up configurations info_if_rank_zero(log, f'Configuration: {cfg}') info_if_rank_zero(log, f'Batch size (per GPU): {cfg.batch_size}') # construct the trainer runner = Runner(cfg, log=log, run_path=run_dir, for_training=False).enter_val() # load the last weights if needed if cfg['weights'] is not None: info_if_rank_zero(log, f'Loading weights from the disk: {cfg["weights"]}') runner.load_weights(cfg['weights']) cfg['weights'] = None else: weights = runner.get_final_ema_weight_path() if weights is not None: info_if_rank_zero(log, f'Automatically finding weight: {weights}') runner.load_weights(weights) # setup datasets dataset, sampler, loader = setup_test_datasets(cfg) data_cfg = cfg.data.ExtractedVGG_test with open_dict(data_cfg): if cfg.output_name is not None: # append to the tag data_cfg.tag = f'{data_cfg.tag}-{cfg.output_name}' # loop audio_path = None for curr_iter, data in enumerate(tqdm(loader)): new_audio_path = runner.inference_pass(data, curr_iter, data_cfg) if audio_path is None: audio_path = new_audio_path else: assert audio_path == new_audio_path, 'Different audio path detected' info_if_rank_zero(log, f'Inference completed. Audio path: {audio_path}') output_metrics = runner.eval(audio_path, curr_iter, data_cfg) if local_rank == 0: # write the output metrics to run_dir output_metrics_path = os.path.join(run_dir, f'{data_cfg.tag}-output_metrics.json') with open(output_metrics_path, 'w') as f: json.dump(output_metrics, f, indent=4)