Phil Sobrepena
initial commit
73ed896
raw
history blame
7.37 kB
"""
Dumps things to tensorboard and console
"""
import datetime
import logging
import math
import os
from collections import defaultdict
from pathlib import Path
from typing import Optional, Union
import matplotlib.pyplot as plt
import numpy as np
import torch
import torchaudio
from PIL import Image
from pytz import timezone
from torch.utils.tensorboard import SummaryWriter
from mmaudio.utils.email_utils import EmailSender
from mmaudio.utils.time_estimator import PartialTimeEstimator, TimeEstimator
from mmaudio.utils.timezone import my_timezone
def tensor_to_numpy(image: torch.Tensor):
image_np = (image.numpy() * 255).astype('uint8')
return image_np
def detach_to_cpu(x: torch.Tensor):
return x.detach().cpu()
def fix_width_trunc(x: float):
return ('{:.9s}'.format('{:0.9f}'.format(x)))
def plot_spectrogram(spectrogram: np.ndarray, title=None, ylabel="freq_bin", ax=None):
if ax is None:
_, ax = plt.subplots(1, 1)
if title is not None:
ax.set_title(title)
ax.set_ylabel(ylabel)
ax.imshow(spectrogram, origin="lower", aspect="auto", interpolation="nearest")
class TensorboardLogger:
def __init__(self,
exp_id: str,
run_dir: Union[Path, str],
py_logger: logging.Logger,
*,
is_rank0: bool = False,
enable_email: bool = False):
self.exp_id = exp_id
self.run_dir = Path(run_dir)
self.py_log = py_logger
self.email_sender = EmailSender(exp_id, enable=(is_rank0 and enable_email))
if is_rank0:
self.tb_log = SummaryWriter(run_dir)
else:
self.tb_log = None
# Get current git info for logging
try:
import git
repo = git.Repo(".")
git_info = str(repo.active_branch) + ' ' + str(repo.head.commit.hexsha)
except (ImportError, RuntimeError, TypeError):
print('Failed to fetch git info. Defaulting to None')
git_info = 'None'
self.log_string('git', git_info)
# log the SLURM job id if available
job_id = os.environ.get('SLURM_JOB_ID', None)
if job_id is not None:
self.log_string('slurm_job_id', job_id)
self.email_sender.send(f'Job {job_id} started', f'Job started {run_dir}')
# used when logging metrics
self.batch_timer: TimeEstimator = None
self.data_timer: PartialTimeEstimator = None
self.nan_count = defaultdict(int)
def log_scalar(self, tag: str, x: float, it: int):
if self.tb_log is None:
return
if math.isnan(x) and 'grad_norm' not in tag:
self.nan_count[tag] += 1
if self.nan_count[tag] == 10:
self.email_sender.send(
f'Nan detected in {tag} @ {self.run_dir}',
f'Nan detected in {tag} at iteration {it}; run_dir: {self.run_dir}')
else:
self.nan_count[tag] = 0
self.tb_log.add_scalar(tag, x, it)
def log_metrics(self,
prefix: str,
metrics: dict[str, float],
it: int,
ignore_timer: bool = False):
msg = f'{self.exp_id}-{prefix} - it {it:6d}: '
metrics_msg = ''
for k, v in sorted(metrics.items()):
self.log_scalar(f'{prefix}/{k}', v, it)
metrics_msg += f'{k: >10}:{v:.7f},\t'
if self.batch_timer is not None and not ignore_timer:
self.batch_timer.update()
avg_time = self.batch_timer.get_and_reset_avg_time()
data_time = self.data_timer.get_and_reset_avg_time()
# add time to tensorboard
self.log_scalar(f'{prefix}/avg_time', avg_time, it)
self.log_scalar(f'{prefix}/data_time', data_time, it)
est = self.batch_timer.get_est_remaining(it)
est = datetime.timedelta(seconds=est)
if est.days > 0:
remaining_str = f'{est.days}d {est.seconds // 3600}h'
else:
remaining_str = f'{est.seconds // 3600}h {(est.seconds%3600) // 60}m'
eta = datetime.datetime.now(timezone(my_timezone)) + est
eta_str = eta.strftime('%Y-%m-%d %H:%M:%S %Z%z')
time_msg = f'avg_time:{avg_time:.3f},data:{data_time:.3f},remaining:{remaining_str},eta:{eta_str},\t'
msg = f'{msg} {time_msg}'
msg = f'{msg} {metrics_msg}'
self.py_log.info(msg)
def log_histogram(self, tag: str, hist: torch.Tensor, it: int):
if self.tb_log is None:
return
# hist should be a 1D tensor
hist = hist.cpu().numpy()
fig, ax = plt.subplots()
x_range = np.linspace(0, 1, len(hist))
ax.bar(x_range, hist, width=1 / (len(hist) - 1))
ax.set_xticks(x_range)
ax.set_xticklabels(x_range)
plt.tight_layout()
self.tb_log.add_figure(tag, fig, it)
plt.close()
def log_image(self, prefix: str, tag: str, image: np.ndarray, it: int):
image_dir = self.run_dir / f'{prefix}_images'
image_dir.mkdir(exist_ok=True, parents=True)
image = Image.fromarray(image)
image.save(image_dir / f'{it:09d}_{tag}.png')
def log_audio(self,
prefix: str,
tag: str,
waveform: torch.Tensor,
it: Optional[int] = None,
*,
subdir: Optional[Path] = None,
sample_rate: int = 16000) -> Path:
if subdir is None:
audio_dir = self.run_dir / prefix
else:
audio_dir = self.run_dir / subdir / prefix
audio_dir.mkdir(exist_ok=True, parents=True)
if it is None:
name = f'{tag}.flac'
else:
name = f'{it:09d}_{tag}.flac'
torchaudio.save(audio_dir / name,
waveform.cpu().float(),
sample_rate=sample_rate,
channels_first=True)
return Path(audio_dir)
def log_spectrogram(
self,
prefix: str,
tag: str,
spec: torch.Tensor,
it: Optional[int],
*,
subdir: Optional[Path] = None,
):
if subdir is None:
spec_dir = self.run_dir / prefix
else:
spec_dir = self.run_dir / subdir / prefix
spec_dir.mkdir(exist_ok=True, parents=True)
if it is None:
name = f'{tag}.png'
else:
name = f'{it:09d}_{tag}.png'
plot_spectrogram(spec.cpu().float())
plt.tight_layout()
plt.savefig(spec_dir / name)
plt.close()
def log_string(self, tag: str, x: str):
self.py_log.info(f'{tag} - {x}')
if self.tb_log is None:
return
self.tb_log.add_text(tag, x)
def debug(self, x):
self.py_log.debug(x)
def info(self, x):
self.py_log.info(x)
def warning(self, x):
self.py_log.warning(x)
def error(self, x):
self.py_log.error(x)
def critical(self, x):
self.py_log.critical(x)
self.email_sender.send(f'Error occurred in {self.run_dir}', x)
def complete(self):
self.email_sender.send(f'Job completed in {self.run_dir}', 'Job completed')