sonisphere / mmaudio /utils /log_integrator.py
Phil Sobrepena
initial commit
73ed896
raw
history blame
3.92 kB
"""
Integrate numerical values for some iterations
Typically used for loss computation / logging to tensorboard
Call finalize and create a new Integrator when you want to display/log
"""
from typing import Callable, Union
import torch
from mmaudio.utils.logger import TensorboardLogger
from mmaudio.utils.tensor_utils import distribute_into_histogram
class Integrator:
def __init__(self, logger: TensorboardLogger, distributed: bool = True):
self.values = {}
self.counts = {}
self.hooks = [] # List is used here to maintain insertion order
# for binned tensors
self.binned_tensors = {}
self.binned_tensor_indices = {}
self.logger = logger
self.distributed = distributed
self.local_rank = torch.distributed.get_rank()
self.world_size = torch.distributed.get_world_size()
def add_scalar(self, key: str, x: Union[torch.Tensor, int, float]):
if isinstance(x, torch.Tensor):
x = x.detach()
if x.dtype in [torch.long, torch.int, torch.bool]:
x = x.float()
if key not in self.values:
self.counts[key] = 1
self.values[key] = x
else:
self.counts[key] += 1
self.values[key] += x
def add_dict(self, tensor_dict: dict[str, torch.Tensor]):
for k, v in tensor_dict.items():
self.add_scalar(k, v)
def add_binned_tensor(self, key: str, x: torch.Tensor, indices: torch.Tensor):
if key not in self.binned_tensors:
self.binned_tensors[key] = [x.detach().flatten()]
self.binned_tensor_indices[key] = [indices.detach().flatten()]
else:
self.binned_tensors[key].append(x.detach().flatten())
self.binned_tensor_indices[key].append(indices.detach().flatten())
def add_hook(self, hook: Callable[[torch.Tensor], tuple[str, torch.Tensor]]):
"""
Adds a custom hook, i.e. compute new metrics using values in the dict
The hook takes the dict as argument, and returns a (k, v) tuple
e.g. for computing IoU
"""
self.hooks.append(hook)
def reset_except_hooks(self):
self.values = {}
self.counts = {}
# Average and output the metrics
def finalize(self, prefix: str, it: int, ignore_timer: bool = False) -> None:
for hook in self.hooks:
k, v = hook(self.values)
self.add_scalar(k, v)
# for the metrics
outputs = {}
for k, v in self.values.items():
avg = v / self.counts[k]
if self.distributed:
# Inplace operation
if isinstance(avg, torch.Tensor):
avg = avg.cuda()
else:
avg = torch.tensor(avg).cuda()
torch.distributed.reduce(avg, dst=0)
if self.local_rank == 0:
avg = (avg / self.world_size).cpu().item()
outputs[k] = avg
else:
# Simple does it
outputs[k] = avg
if (not self.distributed) or (self.local_rank == 0):
self.logger.log_metrics(prefix, outputs, it, ignore_timer=ignore_timer)
# for the binned tensors
for k, v in self.binned_tensors.items():
x = torch.cat(v, dim=0)
indices = torch.cat(self.binned_tensor_indices[k], dim=0)
hist, count = distribute_into_histogram(x, indices)
if self.distributed:
torch.distributed.reduce(hist, dst=0)
torch.distributed.reduce(count, dst=0)
if self.local_rank == 0:
hist = hist / count
else:
hist = hist / count
if (not self.distributed) or (self.local_rank == 0):
self.logger.log_histogram(f'{prefix}/{k}', hist, it)