Spaces:
Sleeping
Sleeping
import torch | |
import torch.nn as nn | |
import math | |
# https://github.com/facebookresearch/DiT | |
class TimestepEmbedder(nn.Module): | |
""" | |
Embeds scalar timesteps into vector representations. | |
""" | |
def __init__(self, hidden_dim: int, frequency_embedding_size: int = 256): | |
super().__init__() | |
self.mlp = nn.Sequential( | |
nn.Linear(frequency_embedding_size, hidden_dim, bias=True), | |
nn.SiLU(), | |
nn.Linear(hidden_dim, hidden_dim, bias=True), | |
) | |
self.frequency_embedding_size = frequency_embedding_size | |
half_dim = self.frequency_embedding_size // 2 | |
freqs = torch.exp( | |
-math.log(10000) * torch.arange(start=0, end=half_dim, dtype=torch.float32) / | |
half_dim | |
) | |
self.register_buffer('freqs', freqs) | |
def forward(self, t): | |
t_freq = t.unsqueeze(-1) * self.freqs.unsqueeze(0) | |
t_embed = torch.cat([t_freq.sin(), t_freq.cos()], dim=-1) | |
t_embed = self.mlp(t_embed.to(t.dtype)) | |
return t_embed | |