File size: 6,509 Bytes
73ed896
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
import logging
import os
from argparse import ArgumentParser
from pathlib import Path

import pandas as pd
import tensordict as td
import torch
import torch.distributed as distributed
import torch.nn.functional as F
from open_clip import create_model_from_pretrained
from torch.utils.data import DataLoader
from tqdm import tqdm

from mmaudio.data.data_setup import error_avoidance_collate
from mmaudio.data.extraction.wav_dataset import WavTextClipsDataset
from mmaudio.ext.autoencoder import AutoEncoderModule
from mmaudio.ext.mel_converter import get_mel_converter

log = logging.getLogger()

torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True

local_rank = int(os.environ['LOCAL_RANK'])
world_size = int(os.environ['WORLD_SIZE'])

# 16k
SAMPLE_RATE = 16_000
NUM_SAMPLES = 16_000 * 8
tod_vae_ckpt = './ext_weights/v1-16.pth'
bigvgan_vocoder_ckpt = './ext_weights/best_netG.pt'
mode = '16k'

# 44k
"""
NOTE: 352800 (8*44100) is not divisible by (STFT hop size * VAE downsampling ratio) which is 1024.
353280 is the next integer divisible by 1024.
"""

# SAMPLE_RATE = 44100
# NUM_SAMPLES = 353280
# tod_vae_ckpt = './ext_weights/v1-44.pth'
# bigvgan_vocoder_ckpt = None
# mode = '44k'


def distributed_setup():
    distributed.init_process_group(backend="nccl")
    local_rank = distributed.get_rank()
    world_size = distributed.get_world_size()
    print(f'Initialized: local_rank={local_rank}, world_size={world_size}')
    return local_rank, world_size


@torch.inference_mode()
def main():
    distributed_setup()

    parser = ArgumentParser()
    parser.add_argument('--data_dir', type=Path, default='./training/example_audios/')
    parser.add_argument('--captions_tsv', type=Path, default='./training/example_audio.tsv')
    parser.add_argument('--clips_tsv', type=Path, default='./training/example_output/clips.tsv')
    parser.add_argument('--latent_dir',
                        type=Path,
                        default='./training/example_output/audio-latents')
    parser.add_argument('--output_dir',
                        type=Path,
                        default='./training/example_output/memmap/audio-example')
    parser.add_argument('--batch_size', type=int, default=32)
    parser.add_argument('--num_workers', type=int, default=8)
    args = parser.parse_args()

    data_dir = args.data_dir
    captions_tsv = args.captions_tsv
    clips_tsv = args.clips_tsv
    latent_dir = args.latent_dir
    output_dir = args.output_dir
    batch_size = args.batch_size
    num_workers = args.num_workers

    clip_model = create_model_from_pretrained('hf-hub:apple/DFN5B-CLIP-ViT-H-14-384',
                                              return_transform=False).eval().cuda()

    # a hack to make it output last hidden states
    def new_encode_text(self, text, normalize: bool = False):
        cast_dtype = self.transformer.get_cast_dtype()

        x = self.token_embedding(text).to(cast_dtype)  # [batch_size, n_ctx, d_model]

        x = x + self.positional_embedding.to(cast_dtype)
        x = self.transformer(x, attn_mask=self.attn_mask)
        x = self.ln_final(x)  # [batch_size, n_ctx, transformer.width]
        return F.normalize(x, dim=-1) if normalize else x

    clip_model.encode_text = new_encode_text.__get__(clip_model)

    tod = AutoEncoderModule(vae_ckpt_path=tod_vae_ckpt,
                            vocoder_ckpt_path=bigvgan_vocoder_ckpt,
                            mode=mode).eval().cuda()
    mel_converter = get_mel_converter(mode).eval().cuda()

    dataset = WavTextClipsDataset(data_dir,
                                  captions_tsv=captions_tsv,
                                  clips_tsv=clips_tsv,
                                  sample_rate=SAMPLE_RATE,
                                  num_samples=NUM_SAMPLES,
                                  normalize_audio=True,
                                  reject_silent=True)
    dataloader = DataLoader(dataset,
                            batch_size=batch_size,
                            shuffle=False,
                            num_workers=num_workers,
                            collate_fn=error_avoidance_collate)
    latent_dir.mkdir(exist_ok=True, parents=True)

    # extraction
    for i, batch in tqdm(enumerate(dataloader), total=len(dataloader)):
        ids = batch['id']
        waveforms = batch['waveform'].cuda()
        tokens = batch['tokens'].cuda()

        text_features = clip_model.encode_text(tokens, normalize=True)
        mel = mel_converter(waveforms)
        dist = tod.encode(mel)

        a_mean = dist.mean.detach().cpu().transpose(1, 2)
        a_std = dist.std.detach().cpu().transpose(1, 2)
        text_features = text_features.detach().cpu()

        ids = [id for id in ids]
        captions = [caption for caption in batch['caption']]

        data = {
            'id': ids,
            'caption': captions,
            'mean': a_mean,
            'std': a_std,
            'text_features': text_features,
        }

        torch.save(data, latent_dir / f'r{local_rank}_{i:05d}.pth')

    distributed.barrier()
    # combine the results
    if local_rank == 0:
        print('Extraction done. Combining the results.')

        list_of_ids_and_labels = []
        output_data = {
            'mean': [],
            'std': [],
            'text_features': [],
        }

        latents = sorted(os.listdir(latent_dir))
        latents = [l for l in latents if l.endswith('.pth')]
        for t in tqdm(latents):
            data = torch.load(latent_dir / t, weights_only=True)
            bs = len(data['id'])

            for bi in range(bs):
                this_id = data['id'][bi]
                this_caption = data['caption'][bi]

                list_of_ids_and_labels.append({'id': this_id, 'caption': this_caption})
                output_data['mean'].append(data['mean'][bi])
                output_data['std'].append(data['std'][bi])
                output_data['text_features'].append(data['text_features'][bi])

        output_df = pd.DataFrame(list_of_ids_and_labels)
        output_dir.mkdir(exist_ok=True, parents=True)
        output_name = output_dir.stem
        output_df.to_csv(output_dir.parent / f'{output_name}.tsv', sep='\t', index=False)

        print(f'Output: {len(output_df)}')

        output_data = {k: torch.stack(v) for k, v in output_data.items()}
        td.TensorDict(output_data).memmap_(output_dir)


if __name__ == '__main__':
    main()
    distributed.destroy_process_group()