File size: 8,677 Bytes
73ed896
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f47eaa6
73ed896
 
 
 
 
 
 
 
 
 
 
 
 
 
f47eaa6
 
73ed896
 
 
f47eaa6
 
73ed896
 
 
 
 
 
 
 
 
 
f47eaa6
73ed896
 
 
 
 
f47eaa6
73ed896
 
 
 
 
 
 
 
 
 
 
 
 
 
f47eaa6
73ed896
 
 
 
 
 
 
 
c5cb92f
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
import gc
import logging
from argparse import ArgumentParser
from datetime import datetime
from fractions import Fraction
from pathlib import Path

import gradio as gr
import torch
import torchaudio

from mmaudio.eval_utils import (ModelConfig, VideoInfo, all_model_cfg, generate, load_image,
                                load_video, make_video, setup_eval_logging)
from mmaudio.model.flow_matching import FlowMatching
from mmaudio.model.networks import MMAudio, get_my_mmaudio
from mmaudio.model.sequence_config import SequenceConfig
from mmaudio.model.utils.features_utils import FeaturesUtils

torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True

log = logging.getLogger()

device = 'cpu'
if torch.cuda.is_available():
    device = 'cuda'
elif torch.backends.mps.is_available():
    device = 'mps'
else:
    log.warning('CUDA/MPS are not available, running on CPU')
dtype = torch.bfloat16

model: ModelConfig = all_model_cfg['large_44k_v2']
model.download_if_needed()
output_dir = Path('./output/gradio')

setup_eval_logging()


def get_model() -> tuple[MMAudio, FeaturesUtils, SequenceConfig]:
    seq_cfg = model.seq_cfg

    net: MMAudio = get_my_mmaudio(model.model_name).to(device, dtype).eval()
    net.load_weights(torch.load(model.model_path, map_location=device, weights_only=True))
    log.info(f'Loaded weights from {model.model_path}')

    feature_utils = FeaturesUtils(tod_vae_ckpt=model.vae_path,
                                  synchformer_ckpt=model.synchformer_ckpt,
                                  enable_conditions=True,
                                  mode=model.mode,
                                  bigvgan_vocoder_ckpt=model.bigvgan_16k_path,
                                  need_vae_encoder=False)
    feature_utils = feature_utils.to(device, dtype).eval()

    return net, feature_utils, seq_cfg


net, feature_utils, seq_cfg = get_model()


@torch.inference_mode()
def video_to_audio(video: gr.Video, prompt: str, negative_prompt: str, seed: int, num_steps: int,
                   cfg_strength: float, duration: float):

    rng = torch.Generator(device=device)
    if seed >= 0:
        rng.manual_seed(seed)
    else:
        rng.seed()
    fm = FlowMatching(min_sigma=0, inference_mode='euler', num_steps=num_steps)

    video_info = load_video(video, duration)
    clip_frames = video_info.clip_frames
    sync_frames = video_info.sync_frames
    duration = video_info.duration_sec
    clip_frames = clip_frames.unsqueeze(0)
    sync_frames = sync_frames.unsqueeze(0)
    seq_cfg.duration = duration
    net.update_seq_lengths(seq_cfg.latent_seq_len, seq_cfg.clip_seq_len, seq_cfg.sync_seq_len)

    audios = generate(clip_frames,
                      sync_frames, [prompt],
                      negative_text=[negative_prompt],
                      feature_utils=feature_utils,
                      net=net,
                      fm=fm,
                      rng=rng,
                      cfg_strength=cfg_strength)
    audio = audios.float().cpu()[0]

    current_time_string = datetime.now().strftime('%Y%m%d_%H%M%S')
    output_dir.mkdir(exist_ok=True, parents=True)
    video_save_path = output_dir / f'{current_time_string}.mp4'
    make_video(video_info, video_save_path, audio, sampling_rate=seq_cfg.sampling_rate)
    gc.collect()
    return video_save_path


@torch.inference_mode()
def image_to_audio(image: gr.Image, prompt: str, negative_prompt: str, seed: int, num_steps: int,
                   cfg_strength: float, duration: float):

    rng = torch.Generator(device=device)
    if seed >= 0:
        rng.manual_seed(seed)
    else:
        rng.seed()
    fm = FlowMatching(min_sigma=0, inference_mode='euler', num_steps=num_steps)

    image_info = load_image(image)
    clip_frames = image_info.clip_frames
    sync_frames = image_info.sync_frames
    clip_frames = clip_frames.unsqueeze(0)
    sync_frames = sync_frames.unsqueeze(0)
    seq_cfg.duration = duration
    net.update_seq_lengths(seq_cfg.latent_seq_len, seq_cfg.clip_seq_len, seq_cfg.sync_seq_len)

    audios = generate(clip_frames,
                      sync_frames, [prompt],
                      negative_text=[negative_prompt],
                      feature_utils=feature_utils,
                      net=net,
                      fm=fm,
                      rng=rng,
                      cfg_strength=cfg_strength,
                      image_input=True)
    audio = audios.float().cpu()[0]

    current_time_string = datetime.now().strftime('%Y%m%d_%H%M%S')
    output_dir.mkdir(exist_ok=True, parents=True)
    video_save_path = output_dir / f'{current_time_string}.mp4'
    video_info = VideoInfo.from_image_info(image_info, duration, fps=Fraction(1))
    make_video(video_info, video_save_path, audio, sampling_rate=seq_cfg.sampling_rate)
    gc.collect()
    return video_save_path


@torch.inference_mode()
def text_to_audio(prompt: str, negative_prompt: str, seed: int, num_steps: int, cfg_strength: float,
                  duration: float):

    rng = torch.Generator(device=device)
    if seed >= 0:
        rng.manual_seed(seed)
    else:
        rng.seed()
    fm = FlowMatching(min_sigma=0, inference_mode='euler', num_steps=num_steps)

    clip_frames = sync_frames = None
    seq_cfg.duration = duration
    net.update_seq_lengths(seq_cfg.latent_seq_len, seq_cfg.clip_seq_len, seq_cfg.sync_seq_len)

    audios = generate(clip_frames,
                      sync_frames, [prompt],
                      negative_text=[negative_prompt],
                      feature_utils=feature_utils,
                      net=net,
                      fm=fm,
                      rng=rng,
                      cfg_strength=cfg_strength)
    audio = audios.float().cpu()[0]

    current_time_string = datetime.now().strftime('%Y%m%d_%H%M%S')
    output_dir.mkdir(exist_ok=True, parents=True)
    audio_save_path = output_dir / f'{current_time_string}.flac'
    torchaudio.save(audio_save_path, audio, seq_cfg.sampling_rate)
    gc.collect()
    return audio_save_path


video_to_audio_tab = gr.Interface(
    fn=video_to_audio,
    description=""" Video-to-Audio
    NOTE: It takes longer to process high-resolution videos (>384 px on the shorter side). 
    Doing so does not improve results.
    """,
    inputs=[
        gr.Video(),
        gr.Text(label='Prompt'),
        gr.Text(label='Negative prompt', value='music'),
        gr.Number(label='Seed (-1: random)', value=-1, precision=0, minimum=-1),
        gr.Number(label='Num steps', value=25, precision=0, minimum=1),
        gr.Number(label='Guidance Strength', value=4.5, minimum=1),
        gr.Number(label='Duration (sec)', value=8, minimum=1),
    ],
    outputs='playable_video',
    cache_examples=False,
    title='Sonisphere - Sonic Branding Tool',
    )

text_to_audio_tab = gr.Interface(
    fn=text_to_audio,
    description=""" Text-to-Audio
 """,
    inputs=[
        gr.Text(label='Prompt'),
        gr.Text(label='Negative prompt'),
        gr.Number(label='Seed (-1: random)', value=-1, precision=0, minimum=-1),
        gr.Number(label='Num steps', value=25, precision=0, minimum=1),
        gr.Number(label='Guidance Strength', value=4.5, minimum=1),
        gr.Number(label='Duration (sec)', value=8, minimum=1),
    ],
    outputs='audio',
    cache_examples=False,
    title='Sonisphere - Sonic Branding Tool',
)

image_to_audio_tab = gr.Interface(
    fn=image_to_audio,
    description="""
    Image-to-Audio
    NOTE: It takes longer to process high-resolution images (>384 px on the shorter side). 
    Doing so does not improve results.
    """,
    inputs=[
        gr.Image(type='filepath'),
        gr.Text(label='Prompt'),
        gr.Text(label='Negative prompt'),
        gr.Number(label='Seed (-1: random)', value=-1, precision=0, minimum=-1),
        gr.Number(label='Num steps', value=25, precision=0, minimum=1),
        gr.Number(label='Guidance Strength', value=4.5, minimum=1),
        gr.Number(label='Duration (sec)', value=8, minimum=1),
    ],
    outputs='playable_video',
    cache_examples=False,
    title='Image-to-Audio Synthesis (experimental)',
)

if __name__ == "__main__":
    parser = ArgumentParser()
    parser.add_argument('--port', type=int, default=7860)
    args = parser.parse_args()

    gr.TabbedInterface([video_to_audio_tab, text_to_audio_tab, image_to_audio_tab],
                       ['Video-to-Audio', 'Text-to-Audio', 'Image-to-Audio (experimental)']).launch(
                           server_name="0.0.0.0",
                           server_port=7860,
                           auth=("admin", "sonisphere"),
                           allowed_paths=[output_dir])