import streamlit as st from huggingface_hub import DatasetFilter, HfApi, ModelFilter api = HfApi() def get_metadata(dataset_name): filt = DatasetFilter(dataset_name=dataset_name) data = api.list_datasets(filter=filt, full=True) return data[0].cardData["train-eval-index"] def get_compatible_models(task, dataset_name): filt = ModelFilter(task=task, trained_dataset=dataset_name) compatible_models = api.list_models(filter=filt) return [model.modelId for model in compatible_models] with st.form(key="form"): dataset_name = st.selectbox("Select a dataset to evaluate on", ["lewtun/autoevaluate_emotion"]) metadata = get_metadata(dataset_name) compatible_models = get_compatible_models(metadata[0]["task"], dataset_name.split("/")[-1].split("_")[-1]) options = st.multiselect("Select the models you wish to evaluate", compatible_models) submit_button = st.form_submit_button("Make Submission") if submit_button: st.success(f"✅ Evaluation was successfully submitted for evaluation with job ID ")