Spaces:
Runtime error
Runtime error
import os | |
from pathlib import Path | |
import typer | |
from datasets import load_dataset | |
from dotenv import load_dotenv | |
from rich import print | |
from utils import http_get, http_post | |
if Path(".env").is_file(): | |
load_dotenv(".env") | |
HF_TOKEN = os.getenv("HF_TOKEN") | |
AUTOTRAIN_TOKEN = os.getenv("AUTOTRAIN_TOKEN") | |
AUTOTRAIN_USERNAME = os.getenv("AUTOTRAIN_USERNAME") | |
AUTOTRAIN_BACKEND_API = os.getenv("AUTOTRAIN_BACKEND_API") | |
def main(): | |
logs_df = load_dataset("autoevaluate/evaluation-job-logs", use_auth_token=True, split="train").to_pandas() | |
evaluated_projects_ds = load_dataset("autoevaluate/evaluated-project-ids", use_auth_token=True, split="train") | |
projects_df = logs_df.copy()[(~logs_df["project_id"].isnull()) & (logs_df["is_evaluated"] == False)] | |
projects_to_approve = projects_df["project_id"].astype(int).tolist() | |
for project_id in projects_to_approve: | |
project_status = http_get( | |
path=f"/projects/{project_id}", | |
token=HF_TOKEN, | |
domain=AUTOTRAIN_BACKEND_API, | |
).json() | |
if project_status["status"] == 3: | |
train_job_resp = http_post( | |
path=f"/projects/{project_id}/start_training", | |
token=HF_TOKEN, | |
domain=AUTOTRAIN_BACKEND_API, | |
).json() | |
print(f"πββοΈ Project {project_id} approval response: {train_job_resp}") | |
# if train_job_resp["approved"] == True: | |
# # Update evaluation status | |
if __name__ == "__main__": | |
typer.run(main) | |