Spaces:
Paused
Paused
File size: 33,232 Bytes
75fa479 2f9c62d 75fa479 2f9c62d 75fa479 2f9c62d 75fa479 2f9c62d 75fa479 2f9c62d 75fa479 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 |
from typing import Any, Optional, Callable, List, Tuple
import os
import time
import numpy as np
import torch
from torch import nn
from torch.nn import functional as F
from accelerate import init_empty_weights
from transformers.activations import ACT2FN
from transformers.generation import GenerationConfig
from transformers.models.opt.modeling_opt import (
OPTAttention,
OPTDecoder,
OPTDecoderLayer,
OPTForCausalLM,
OPTModel,
)
from transformers.models.opt.configuration_opt import OPTConfig
from huggingface_hub import snapshot_download
from configuration_tricksy import TricksyConfig
from util import batch_copy, compute_index_diffs, load_mlp_sparsity_predictor, mmap_to_tensor, topk_and_threshold
TRICKSY_WEIGHTS_PATH = 'tricksy-weights/'
class SparseMLPCache:
def __init__(
self,
indexed_fc1_weight: Optional[torch.Tensor] = None,
indexed_fc1_bias: Optional[torch.Tensor] = None,
indexed_fc2_weight: Optional[torch.Tensor] = None,
gpu_cached_mlp_indices: Optional[torch.Tensor] = None,
):
# [ffn_embed_dim * min_mlp_sparsity, hidden_size]
self.indexed_fc1_weight = indexed_fc1_weight
# [ffn_embed_dim * min_mlp_sparsity]
self.indexed_fc1_bias = indexed_fc1_bias
# [ffn_embed_dim * min_mlp_sparsity, hidden_size] (stored in transpose for efficient indexing)
self.indexed_fc2_weight = indexed_fc2_weight
# Indices that are already on GPU (this tensor is stored on the CPU)
# [ffn_embed_dim * min_mlp_sparsity]
self.gpu_cached_mlp_indices = gpu_cached_mlp_indices
class SparseIndices:
def __init__(self, tricksy_config: TricksyConfig, opt_config: OPTConfig):
self.mlp_indices_buffer_gpu = torch.empty(
(int(opt_config.ffn_dim * tricksy_config.min_mlp_sparsity_gpu),),
dtype=torch.int32,
device='cuda'
)
self.mlp_indices_buffer_cpu = torch.empty(
(int(opt_config.ffn_dim * tricksy_config.min_mlp_sparsity_gpu),),
dtype=torch.int32,
device='cpu',
pin_memory=True,
)
# Default stream blocks until indices are copied to CPU
self.index_copy_stream = torch.cuda.default_stream()
def copy_mlp_indices_to_cpu(self):
self.mlp_indices_buffer_cpu = batch_copy([self.mlp_indices_buffer_gpu], self.index_copy_stream, device='cpu')[0]
class OPTDiskWeights:
def __init__(self, model_name: str):
self.model_name = model_name
self.model_suffix = model_name.split('/')[-1]
self.config = OPTConfig.from_pretrained(model_name)
try:
print(f'downloading from austinsilveria/tricksy-{self.model_suffix}')
self.weight_path = snapshot_download(repo_id=f'austinsilveria/tricksy-{self.model_suffix}') + '/'
except:
print(f'failed to download from austinsilveria/tricksy-{self.model_suffix}')
self.weight_path = f'{TRICKSY_WEIGHTS_PATH}{self.model_suffix}/'
with init_empty_weights():
model = OPTModel(self.config)
self.state_dict = model.state_dict()
if not os.path.exists(f'{self.weight_path}decoder.embed_tokens.weight'):
# Download original weights and write memmap files
print(f'downloading and preprocessing original weights')
self.cache_weights()
head_dim = self.config.hidden_size // self.config.num_attention_heads
for i in range(self.config.num_hidden_layers):
layer_prefix = f'decoder.layers.{i}.'
self.delete_weights([
f'{layer_prefix}self_attn.q_proj.weight',
f'{layer_prefix}self_attn.k_proj.weight',
f'{layer_prefix}self_attn.v_proj.weight',
f'{layer_prefix}self_attn.out_proj.weight',
f'{layer_prefix}self_attn.q_proj.bias',
f'{layer_prefix}self_attn.k_proj.bias',
f'{layer_prefix}self_attn.v_proj.bias'
])
self.add_weights([
(f'{layer_prefix}fc2.weight', (self.config.ffn_dim, self.config.hidden_size)),
(f'{layer_prefix}self_attn.catted_head_weights', (self.config.num_attention_heads, head_dim * 4, self.config.hidden_size)),
(f'{layer_prefix}self_attn.catted_head_biases', (self.config.num_attention_heads, 3, head_dim)),
])
self.memmap_weights = { key: self.load_memmap_weight(key) for key in self.state_dict.keys() }
def load_memmap_weight(self, key: str):
return torch.from_numpy(np.memmap(f'{self.weight_path}{key}', dtype='float16', mode='r', shape=(self.state_dict[key].shape)))
def add_weights(self, weights: List[Tuple[str, torch.Size]]):
for key, shape in weights:
self.state_dict[key] = torch.empty(shape, dtype=torch.float16, device='meta')
def delete_weights(self, keys: List[str]):
for key in keys:
if key in self.state_dict:
del self.state_dict[key]
path = f'{self.weight_path}{key}'
if os.path.exists(path):
os.remove(path)
def cache_weights(self):
os.makedirs(self.weight_path, exist_ok=True)
weights_location = snapshot_download(repo_id=self.model_name, ignore_patterns=['flax*', 'tf*'])
shards = [file for file in os.listdir(weights_location) if file.startswith("pytorch_model") and file.endswith(".bin")]
for shard in shards:
print(f'caching {shard}')
shard_path = os.path.join(weights_location, shard)
shard_state_dict = torch.load(shard_path)
for key in shard_state_dict.keys():
path = f'{self.weight_path}{key.replace("model.", "")}'
memmap = np.memmap(path, dtype='float16', mode='w+', shape=(shard_state_dict[key].shape))
memmap[:] = shard_state_dict[key].cpu().numpy()
# Store weights in shape for efficient indexing
for i in range(self.config.num_hidden_layers):
layer_prefix = f'decoder.layers.{i}.'
# FC2 in transpose
fc2t = torch.from_numpy(np.array(self.load_memmap_weight(f'{layer_prefix}fc2.weight')[:])).t().contiguous().clone()
np.memmap(f'{self.weight_path}decoder.layers.{i}.fc2.weight', dtype='float16', mode='w+', shape=fc2t.shape)[:] = fc2t.numpy()
# Attention weights by head
head_dim = self.config.hidden_size // self.config.num_attention_heads
qw = mmap_to_tensor(self.load_memmap_weight(f'{layer_prefix}self_attn.q_proj.weight')[:])
kw = mmap_to_tensor(self.load_memmap_weight(f'{layer_prefix}self_attn.k_proj.weight')[:])
vw = mmap_to_tensor(self.load_memmap_weight(f'{layer_prefix}self_attn.v_proj.weight')[:])
ow = mmap_to_tensor(self.load_memmap_weight(f'{layer_prefix}self_attn.out_proj.weight')[:])
pre_cat_shape = (self.config.num_attention_heads, head_dim, self.config.hidden_size)
# [head, head_dim * 4, hidden_size]
catted_head_weights = torch.cat(
[qw.view(pre_cat_shape).clone(), kw.view(pre_cat_shape).clone(), vw.view(pre_cat_shape).clone(), ow.T.view(pre_cat_shape).clone(),],
dim=1,
).contiguous().clone()
np.memmap(f'{self.weight_path}{layer_prefix}self_attn.catted_head_weights', dtype='float16', mode='w+', shape=catted_head_weights.shape)[:] =\
catted_head_weights.numpy()
# Attention biases by head
qb = mmap_to_tensor(self.load_memmap_weight(f'{layer_prefix}self_attn.q_proj.bias')[:])
kb = mmap_to_tensor(self.load_memmap_weight(f'{layer_prefix}self_attn.k_proj.bias')[:])
vb = mmap_to_tensor(self.load_memmap_weight(f'{layer_prefix}self_attn.v_proj.bias')[:])
pre_cat_shape = (self.config.num_attention_heads, 1, head_dim)
# [head, 3, head_dim]
catted_head_biases = torch.cat(
# Don't index out bias since we need all dims after projecting back up to hidden size
[qb.view(pre_cat_shape).clone(), kb.view(pre_cat_shape).clone(), vb.view(pre_cat_shape).clone()],
dim=1,
).contiguous().clone()
np.memmap(f'{self.weight_path}{layer_prefix}self_attn.catted_head_biases', dtype='float16', mode='w+', shape=catted_head_biases.shape)[:] =\
catted_head_biases.numpy()
self.delete_weights([
f'{layer_prefix}self_attn.q_proj.weight',
f'{layer_prefix}self_attn.k_proj.weight',
f'{layer_prefix}self_attn.v_proj.weight',
f'{layer_prefix}self_attn.out_proj.weight',
f'{layer_prefix}self_attn.q_proj.bias',
f'{layer_prefix}self_attn.k_proj.bias',
f'{layer_prefix}self_attn.v_proj.bias'
])
self.add_weights([
(f'{layer_prefix}self_attn.catted_head_weights', catted_head_weights.shape),
(f'{layer_prefix}self_attn.catted_head_biases', catted_head_biases.shape),
])
class TricksyContext:
def __init__(self, tricksy_config: TricksyConfig, opt_config: OPTConfig):
self.indices = SparseIndices(tricksy_config, opt_config)
self.load_weight_stream = torch.cuda.Stream()
self.layer = 0
self.is_prompt_phase = True
self.forward_times = []
class TricksyLayer:
def __call__(self, *args: Any, **kwds: Any) -> Any:
return self.forward(*args, **kwds)
def load_weights(self, tricksy_context: TricksyContext):
pass
class TricksyLayerInputs:
def __init__(
self,
disk_weights: OPTDiskWeights,
layer_key_prefix: str = None,
next_layer: TricksyLayer = None,
sparsity_predictors: List[Callable[[torch.Tensor], torch.Tensor]] = None,
) -> None:
self.disk_weights = disk_weights
# self.get_weight = lambda key: self.disk_weights.load_memmap_weight(f'{layer_key_prefix}{key}')
self.get_weight = lambda key: self.disk_weights.memmap_weights[(f'{layer_key_prefix}{key}')]
self.layer_key_prefix = layer_key_prefix
self.next_layer = next_layer
self.sparsity_predictors = sparsity_predictors
class TricksyOPTLearnedPositionalEmbedding(TricksyLayer):
"""
This module learns positional embeddings up to a fixed maximum size.
"""
def __init__(self, tricksy_context):
# OPT is set up so that if padding_idx is specified then offset the embedding ids by 2
# and adjust num_embeddings appropriately. Other models don't have this hack
self.offset = 2
self.tricksy_context = tricksy_context
self.weight = None
def __call__(self, *args: Any, **kwds: Any) -> Any:
return self.forward(*args, **kwds)
def forward(self, attention_mask: torch.LongTensor, past_key_values_length: int = 0):
"""`input_ids_shape` is expected to be [bsz x seqlen]."""
attention_mask = attention_mask.long()
# create positions depending on attention_mask
positions = (torch.cumsum(attention_mask, dim=1).type_as(attention_mask) * attention_mask).long() - 1
# cut positions if `past_key_values_length` is > 0
positions = positions[:, past_key_values_length:]
out = F.embedding(positions + self.offset, self.weight)
return out
class TricksyOPTAttention(OPTAttention, TricksyLayer):
def __init__(self, tricksy_config: TricksyConfig, inputs: TricksyLayerInputs, tricksy_context: TricksyContext, is_decoder: bool = False, **kwargs):
nn.Module.__init__(self)
self.tricksy_config = tricksy_config
self.config = tricksy_config.opt_config
def _handle_deprecated_argument(config_arg_name, config, fn_arg_name, kwargs):
"""
If a the deprecated argument `fn_arg_name` is passed, raise a deprecation
warning and return that value, otherwise take the equivalent config.config_arg_name
"""
val = None
if fn_arg_name in kwargs:
print(
"Passing in {} to {self.__class__.__name__} is deprecated and won't be supported from v4.38."
" Please set it in the config instead"
)
val = kwargs.pop(fn_arg_name)
else:
val = getattr(config, config_arg_name)
return val
self.embed_dim = _handle_deprecated_argument("hidden_size", self.config, "embed_dim", kwargs)
self.num_heads = _handle_deprecated_argument("num_attention_heads", self.config, "num_heads", kwargs)
self.dropout = _handle_deprecated_argument("attention_dropout", self.config, "dropout", kwargs)
self.enable_bias = _handle_deprecated_argument("enable_bias", self.config, "bias", kwargs)
self.head_dim = self.embed_dim // self.num_heads
self.is_causal = True
if (self.head_dim * self.num_heads) != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
f" and `num_heads`: {self.num_heads})."
)
self.scaling = self.head_dim**-0.5
self.is_decoder = is_decoder
# [Tricksy]
self.tricksy_context = tricksy_context
self.inputs = inputs
self.head_dim = self.config.hidden_size // self.config.num_attention_heads
self.qw = self.kw = self.vw = self.ow = self.qb = self.kb = self.vb = self.out_proj_bias = self.layer_norm_weight = self.layer_norm_bias = None
self.q_proj = lambda x: F.linear(x, self.qw, self.qb)
self.k_proj = lambda x: F.linear(x, self.kw, self.kb)
self.v_proj = lambda x: F.linear(x, self.vw, self.vb)
self.out_proj = lambda x: F.linear(x, self.ow, self.out_proj_bias)
self.layer_norm = lambda x: F.layer_norm(x, (self.config.hidden_size,), self.layer_norm_weight, self.layer_norm_bias)
def clear(self):
self.qw = self.kw = self.vw = self.ow = self.qb = self.kb = self.vb = self.out_proj_bias = self.layer_norm_weight = self.layer_norm_bias = None
def load_weights(self, tricksy_context: TricksyContext):
if self.tricksy_context.is_prompt_phase:
# Full weights for prompt phase
self.catted_weights, self.catted_biases, self.out_proj_bias, self.layer_norm_weight, self.layer_norm_bias = batch_copy(
[
mmap_to_tensor(self.inputs.get_weight('self_attn.catted_head_weights')[:], pin_memory=True),
mmap_to_tensor(self.inputs.get_weight('self_attn.catted_head_biases')[:], pin_memory=True),
mmap_to_tensor(self.inputs.get_weight('self_attn.out_proj.bias')[:], pin_memory=True),
mmap_to_tensor(self.inputs.get_weight('self_attn_layer_norm.weight')[:], pin_memory=True),
mmap_to_tensor(self.inputs.get_weight('self_attn_layer_norm.bias')[:], pin_memory=True),
],
tricksy_context.load_weight_stream,
)
torch.cuda.synchronize()
# Weights stored in shape for efficient indexing to support offloading attention heads (not currently being done)
self.qw = self.catted_weights[:, :self.head_dim, :].reshape(self.config.hidden_size, self.config.hidden_size).contiguous()
self.kw = self.catted_weights[:, self.head_dim:self.head_dim * 2, :].reshape(self.config.hidden_size, self.config.hidden_size).contiguous()
self.vw = self.catted_weights[:, self.head_dim * 2:self.head_dim * 3, :].reshape(self.config.hidden_size, self.config.hidden_size).contiguous()
self.ow = self.catted_weights[:, self.head_dim * 3:, :].reshape(self.config.hidden_size, self.config.hidden_size).t().contiguous()
self.catted_weights = None
self.qb = self.catted_biases[:, 0, :].reshape(self.config.hidden_size).contiguous()
self.kb = self.catted_biases[:, 1, :].reshape(self.config.hidden_size).contiguous()
self.vb = self.catted_biases[:, 2, :].reshape(self.config.hidden_size).contiguous()
self.catted_biases = None
def forward(self, hidden_states, **kwargs):
# Wait for attention weights to get to GPU
torch.cuda.synchronize()
# Predict MLP sparsity based on attention input
self.tricksy_context.indices.mlp_indices_buffer_gpu = topk_and_threshold(
self.inputs.sparsity_predictors[0](hidden_states)[0, -1, :],
int(self.config.ffn_dim * self.tricksy_config.min_mlp_sparsity_gpu),
)
self.tricksy_context.indices.copy_mlp_indices_to_cpu()
torch.cuda.synchronize()
# Load MLP weights while computing attention
self.inputs.next_layer.load_weights(self.tricksy_context)
out = super().forward(self.layer_norm(hidden_states), **kwargs)
# Wait for MLP weights to get to GPU
torch.cuda.synchronize()
return out
class TricksyOPTDecoderLayer(OPTDecoderLayer):
def __init__(self, tricksy_config: TricksyConfig, inputs: TricksyLayerInputs, tricksy_context: TricksyContext):
nn.Module.__init__(self)
self.tricksy_config = tricksy_config
self.config = tricksy_config.opt_config
self.embed_dim = self.config.hidden_size
self.tricksy_context = tricksy_context
self.self_attn_layer_inputs = TricksyLayerInputs(
disk_weights=inputs.disk_weights,
layer_key_prefix=inputs.layer_key_prefix,
# While computing attention, load MLP
next_layer=self,
sparsity_predictors=inputs.sparsity_predictors,
)
self.self_attn = TricksyOPTAttention(tricksy_config, self.self_attn_layer_inputs, tricksy_context, is_decoder=True)
self.do_layer_norm_before = self.config.do_layer_norm_before
self.dropout = self.config.dropout
self.activation_fn = ACT2FN[self.config.activation_function]
self.inputs = inputs
random_mlp_indices_gpu =\
torch.randperm(self.config.ffn_dim, device='cpu', dtype=torch.int32)[:int(self.config.ffn_dim * self.tricksy_config.min_mlp_sparsity_gpu)]
self.index_cache = SparseMLPCache(gpu_cached_mlp_indices=random_mlp_indices_gpu)
# identity since we move this to attention layer
# extreme tricksy
self.self_attn_layer_norm = lambda x: x
self.fc1_weight = self.fc2_weight = self.final_layer_norm_weight = self.fc1_bias = self.fc2_bias = self.final_layer_norm_bias = None
self.ring_idx = 0
self.fc1_weight_diff = self.fc2_weight_diff = self.fc1_bias_diff = None
self.fc1 = lambda x: F.linear(x, torch.cat([self.fc1_weight, self.fc1_weight_diff]), torch.cat([self.fc1_bias, self.fc1_bias_diff]))
self.fc2 = lambda x: F.linear(x, torch.cat([self.fc2_weight, self.fc2_weight_diff]).T, self.fc2_bias)
self.final_layer_norm = lambda x: F.layer_norm(x, (self.embed_dim,), self.final_layer_norm_weight, self.final_layer_norm_bias)
def clear(self):
self.fc1_weight = self.fc2_weight = self.final_layer_norm_weight = self.fc1_bias = self.fc2_bias = self.final_layer_norm_bias = None
self.fc1_weight_diff = self.fc2_weight_diff = self.fc1_bias_diff = None
def load_weights(self, tricksy_context: TricksyContext):
if self.tricksy_context.is_prompt_phase:
# Full weights for prompt phase
fc1w = mmap_to_tensor(self.inputs.get_weight('fc1.weight')[:], pin_memory=True)
fc1b = mmap_to_tensor(self.inputs.get_weight('fc1.bias')[:], pin_memory=True)
fc2w = mmap_to_tensor(self.inputs.get_weight('fc2.weight')[:], pin_memory=True)
fc2b = mmap_to_tensor(self.inputs.get_weight('fc2.bias')[:], pin_memory=True)
lnw = mmap_to_tensor(self.inputs.get_weight('final_layer_norm.weight')[:], pin_memory=True)
lnb = mmap_to_tensor(self.inputs.get_weight('final_layer_norm.bias')[:], pin_memory=True)
self.fc1_weight, self.fc1_bias, self.fc2_weight, self.fc2_bias, self.final_layer_norm_weight, self.final_layer_norm_bias =\
batch_copy([fc1w, fc1b, fc2w, fc2b, lnw, lnb], tricksy_context.load_weight_stream)
self.fc1_weight_diff = torch.tensor([], dtype=self.tricksy_config.dtype, device='cuda')
self.fc1_bias_diff = torch.tensor([], dtype=self.tricksy_config.dtype, device='cuda')
self.fc2_weight_diff = torch.tensor([], dtype=self.tricksy_config.dtype, device='cuda')
index_diffs = compute_index_diffs(tricksy_context.indices.mlp_indices_buffer_cpu, [self.index_cache.gpu_cached_mlp_indices])
if len(index_diffs) > 0:
gpu_index_diff = index_diffs[0]
self.index_cache.gpu_cached_mlp_indices[gpu_index_diff.off_positions] = gpu_index_diff.off_elements
self.index_cache.indexed_fc1_weight = fc1w.contiguous().pin_memory()
self.index_cache.indexed_fc1_bias = fc1b.contiguous().pin_memory()
self.index_cache.indexed_fc2_weight = fc2w.contiguous().pin_memory()
return
elif self.fc1_weight is None:
# Full weights if full offload
self.fc1_weight, self.fc1_bias, self.fc2_weight = batch_copy(
[self.index_cache.indexed_fc1_weight, self.index_cache.indexed_fc1_bias, self.index_cache.indexed_fc2_weight],
tricksy_context.load_weight_stream
)
self.fc1_weight_diff = torch.tensor([], dtype=self.tricksy_config.dtype, device='cuda')
self.fc1_bias_diff = torch.tensor([], dtype=self.tricksy_config.dtype, device='cuda')
self.fc2_weight_diff = torch.tensor([], dtype=self.tricksy_config.dtype, device='cuda')
off_elements = torch.tensor(
list(set(tricksy_context.indices.mlp_indices_buffer_cpu.tolist()).difference(set(self.index_cache.gpu_cached_mlp_indices.tolist()))),
device='cpu',
dtype=torch.int32,
pin_memory=True
)
if off_elements.size(0) == 0:
self.fc1_weight_diff = torch.tensor([], dtype=self.tricksy_config.dtype, device='cuda')
self.fc1_bias_diff = torch.tensor([], dtype=self.tricksy_config.dtype, device='cuda')
self.fc2_weight_diff = torch.tensor([], dtype=self.tricksy_config.dtype, device='cuda')
return
new_ring_idx = (self.ring_idx + off_elements.size(0)) % self.index_cache.gpu_cached_mlp_indices.size(0)
if new_ring_idx > self.ring_idx:
# single contiguous update
self.index_cache.gpu_cached_mlp_indices[self.ring_idx:new_ring_idx] = off_elements
elif off_elements.size(0) > 0:
split = self.index_cache.gpu_cached_mlp_indices.size(0) - self.ring_idx
# end of ring
self.index_cache.gpu_cached_mlp_indices[self.ring_idx:] = off_elements[:split]
# beginning of ring
self.index_cache.gpu_cached_mlp_indices[:new_ring_idx] = off_elements[split:]
# Allocate
self.fc1_weight_diff = torch.empty((off_elements.size(0), self.config.hidden_size), dtype=self.tricksy_config.dtype, device='cuda')
self.fc1_bias_diff = torch.empty((off_elements.size(0)), dtype=self.tricksy_config.dtype, device='cuda')
self.fc2_weight_diff = torch.empty((off_elements.size(0), self.config.hidden_size), dtype=self.tricksy_config.dtype, device='cuda')
# Index
fc1wd = self.index_cache.indexed_fc1_weight[off_elements].pin_memory()
fc1bd = self.index_cache.indexed_fc1_bias[off_elements].pin_memory()
fc2wd = self.index_cache.indexed_fc2_weight[off_elements].pin_memory()
# Copy
self.fc1_weight_diff, self.fc1_bias_diff, self.fc2_weight_diff = batch_copy([fc1wd, fc1bd, fc2wd], tricksy_context.load_weight_stream)
def forward(self, *args, **kwargs):
# Wait for attention weights to get to GPU
torch.cuda.synchronize()
# Load next layer's attention weights
self.inputs.next_layer.load_weights(self.tricksy_context)
out = super().forward(*args, **kwargs)
if self.tricksy_config.full_offload:
self.fc1_weight = self.fc1_bias = self.fc2_weight = None
elif self.tricksy_context.is_prompt_phase:
# Only keep sparse MLP weights on GPU after prompt phase
self.fc1_weight = self.fc1_weight[self.index_cache.gpu_cached_mlp_indices.to('cuda')]
self.fc1_bias = self.fc1_bias[self.index_cache.gpu_cached_mlp_indices.to('cuda')]
self.fc2_weight = self.fc2_weight[self.index_cache.gpu_cached_mlp_indices.to('cuda')]
# Update ring buffers
if not self.tricksy_config.full_offload:
prev_ring_idx = self.ring_idx
self.ring_idx = (self.ring_idx + self.fc1_weight_diff.size(0)) % self.fc1_weight.size(0)
if self.ring_idx > prev_ring_idx:
# does not wrap around ring
self.fc1_weight[prev_ring_idx:self.ring_idx] = self.fc1_weight_diff
self.fc1_bias[prev_ring_idx:self.ring_idx] = self.fc1_bias_diff
self.fc2_weight[prev_ring_idx:self.ring_idx] = self.fc2_weight_diff
elif self.fc1_weight_diff.size(0) > 0:
# wraps around ring
split = self.fc1_weight_diff.size(0) - self.ring_idx
self.fc1_weight[prev_ring_idx:] = self.fc1_weight_diff[:split]
self.fc1_weight[:self.ring_idx] = self.fc1_weight_diff[split:]
self.fc1_bias[prev_ring_idx:] = self.fc1_bias_diff[:split]
self.fc1_bias[:self.ring_idx] = self.fc1_bias_diff[split:]
self.fc2_weight[prev_ring_idx:] = self.fc2_weight_diff[:split]
self.fc2_weight[:self.ring_idx] = self.fc2_weight_diff[split:]
self.fc1_weight_diff = self.fc2_weight_diff = self.fc1_bias_diff = None
self.tricksy_context.layer += 1
return out
class TricksyOPTDecoder(OPTDecoder, TricksyLayer):
def __init__(self, tricksy_config: TricksyConfig, disk_weights: OPTDiskWeights, tricksy_opt_for_causal_lm, tricksy_context: TricksyContext):
nn.Module.__init__(self)
self.config = tricksy_config.opt_config
self.dropout = self.config.dropout
self.layerdrop = self.config.layerdrop
self.padding_idx = self.config.pad_token_id
self.max_target_positions = self.config.max_position_embeddings
self.vocab_size = self.config.vocab_size
self._use_flash_attention_2 = False
self.gradient_checkpointing = False
self.project_out = None
self.project_in = None
self.embed_tokens_weight = None
self.embed_positions = TricksyOPTLearnedPositionalEmbedding(tricksy_context)
self.tricksy_context = tricksy_context
self.layers: List[TricksyOPTDecoderLayer] = []
for i in range(self.config.num_hidden_layers):
pretrained_layer_num = self.config.num_hidden_layers - i - 1
sparsity_predictors = [load_mlp_sparsity_predictor(disk_weights.weight_path, pretrained_layer_num, tricksy_config.dtype)]
if sparsity_predictors[0] is None:
sparsity_predictors[0] = lambda x: F.linear(x, torch.rand((self.config.ffn_dim, self.config.hidden_size), device='cuda', dtype=tricksy_config.dtype))
self.layers.append(TricksyOPTDecoderLayer(
tricksy_config,
TricksyLayerInputs(
disk_weights=disk_weights,
layer_key_prefix=f'decoder.layers.{pretrained_layer_num}.',
# While computing MLP, load next attention
# While computing last MLP, load output embeddings (stored in TricksyOPTForCausalLM)
next_layer=self.layers[i - 1].self_attn if i > 0 else tricksy_opt_for_causal_lm,
sparsity_predictors=sparsity_predictors,
),
tricksy_context,
))
self.layers.reverse()
self.final_layer_norm = lambda x: x
self.inputs = TricksyLayerInputs(disk_weights=disk_weights, layer_key_prefix='decoder.')
def clear(self):
self.embed_tokens_weight = self.embed_positions.weight = None
for layer in self.layers:
layer.clear()
def embed_tokens(self, x):
return F.embedding(x, self.embed_tokens_weight, self.padding_idx)
def load_weights(self, tricksy_context: TricksyContext):
if self.embed_tokens_weight is None:
self.embed_tokens_weight, self.embed_positions.weight = batch_copy(
[
mmap_to_tensor(self.inputs.get_weight('embed_tokens.weight')[:], pin_memory=True),
mmap_to_tensor(self.inputs.get_weight('embed_positions.weight')[:], pin_memory=True),
],
tricksy_context.load_weight_stream,
)
def forward(self, *args, **kwargs):
# Wait for input embedding weights to get to GPU
torch.cuda.synchronize()
# While computing input embeddings, load first attention
self.layers[0].self_attn.load_weights(self.tricksy_context)
out = super().forward(*args, **kwargs)
# Wait for output embedding weights to get to GPU
torch.cuda.synchronize()
# No longer prompt phase after first full pass
self.tricksy_context.is_prompt_phase = False
# Load input embeddings while computing output
self.load_weights(self.tricksy_context)
return out
class TricksyOPTModel(OPTModel):
def __init__(self, tricksy_config: TricksyConfig, disk_weights: OPTDiskWeights, tricksy_opt_for_causal_lm, tricksy_context: TricksyContext):
nn.Module.__init__(self)
self.config = tricksy_config.opt_config
self.tricksy_context = tricksy_context
self.decoder = TricksyOPTDecoder(tricksy_config, disk_weights, tricksy_opt_for_causal_lm, tricksy_context)
def clear(self):
self.decoder.clear()
def forward(self, *args, **kwargs):
out = super().forward(*args, **kwargs)
return out
# who's got the weights?
# [InputEmbedding, Attention.0, MLP.0, Attention.1, MLP.1, ..., OutputEmbedding]
# [TricksyOPTDecoder, TricksyOPTAttention.0, TricksyOPTDecoderLayer.0, TricksyOPTAttention.1, TricksyDecoderLayer.1, ..., TricksyOPTForCausalLM]
#
# 1. Prompt pass: Before computing layer, send full dense weights to GPU. After computing layer, only keep sparse weights on GPU.
# 2. Generation passes: Before computing layer, compute and send sparse weight diff to GPU.
class TricksyOPTForCausalLM(OPTForCausalLM, TricksyLayer):
def __init__(self, tricksy_config: TricksyConfig, disk_weights: OPTDiskWeights):
nn.Module.__init__(self)
self.config = disk_weights.config
self.generation_config = GenerationConfig.from_model_config(self.config) if self.can_generate() else None
self.tricksy_context = TricksyContext(tricksy_config, self.config)
self.model = TricksyOPTModel(tricksy_config, disk_weights, self, self.tricksy_context)
self.final_layer_norm_weight = self.lm_head_weight = self.final_layer_norm_bias = None
# double stacking tricksy!
self.final_layer_norm = lambda x: F.layer_norm(x, (self.config.hidden_size,), self.final_layer_norm_weight, self.final_layer_norm_bias)
self.lm_head = lambda x: F.linear(self.final_layer_norm(x), self.lm_head_weight)
self.inputs = TricksyLayerInputs(disk_weights=disk_weights, layer_key_prefix='decoder.', next_layer=self.model.decoder)
def clear(self):
self.model.clear()
def load_weights(self, tricksy_context: TricksyContext):
if self.final_layer_norm_weight is None:
self.final_layer_norm_weight, self.lm_head_weight, self.final_layer_norm_bias = batch_copy(
[
mmap_to_tensor(self.inputs.get_weight('final_layer_norm.weight')[:], pin_memory=True),
mmap_to_tensor(self.inputs.get_weight('embed_tokens.weight')[:], pin_memory=True),
mmap_to_tensor(self.inputs.get_weight('final_layer_norm.bias')[:], pin_memory=True),
],
tricksy_context.load_weight_stream,
)
def forward(self, *args, **kwargs):
torch.cuda.synchronize()
start = time.time()
out = super().forward(*args, **kwargs)
torch.cuda.synchronize()
self.tricksy_context.forward_times.append(time.time() - start)
self.tricksy_context.layer = 0
return out
def generate(self, *args, **kwargs):
# Load input embeddings for first token
self.model.decoder.load_weights(self.tricksy_context)
torch.cuda.synchronize()
out = super().generate(*args, **kwargs)
return out |