Spaces:
Running
Running
Commit
·
c59ebda
1
Parent(s):
5bff47f
added language generation
Browse files- .github/workflows/push_to_hf_hub.yml +1 -1
- .gitignore +2 -1
- app.py +20 -8
- backend.py +0 -0
- {pages → backend}/__init__.py +0 -0
- backend/aragpt.py +182 -0
- {pages → backend}/home.py +0 -0
- backend/modeling_gpt2.py +1196 -0
- {pages → backend}/preprocess.py +0 -0
- {pages → backend}/processor.py +1 -2
- backend/services.py +174 -0
- requirements.txt +3 -1
- test.py +10 -0
.github/workflows/push_to_hf_hub.yml
CHANGED
|
@@ -17,4 +17,4 @@ jobs:
|
|
| 17 |
- name: Push to hub
|
| 18 |
env:
|
| 19 |
HF_TOKEN: ${{ secrets.HF_TOKEN }}
|
| 20 |
-
run: git push --force https://
|
|
|
|
| 17 |
- name: Push to hub
|
| 18 |
env:
|
| 19 |
HF_TOKEN: ${{ secrets.HF_TOKEN }}
|
| 20 |
+
run: git push --force https://aubmindlab:[email protected]/spaces/aubmindlab/Arabic-NLP main
|
.gitignore
CHANGED
|
@@ -129,4 +129,5 @@ dmypy.json
|
|
| 129 |
.pyre/
|
| 130 |
|
| 131 |
|
| 132 |
-
.vscode/
|
|
|
|
|
|
| 129 |
.pyre/
|
| 130 |
|
| 131 |
|
| 132 |
+
.vscode/
|
| 133 |
+
add_key.bat
|
app.py
CHANGED
|
@@ -1,24 +1,36 @@
|
|
| 1 |
-
import streamlit as st
|
| 2 |
import awesome_streamlit as ast
|
| 3 |
-
import
|
| 4 |
-
import pages.processor
|
| 5 |
|
|
|
|
|
|
|
|
|
|
| 6 |
|
| 7 |
st.set_page_config(
|
| 8 |
page_title="TEST", page_icon="📖", initial_sidebar_state="expanded", layout="wide"
|
| 9 |
)
|
| 10 |
|
| 11 |
-
PAGES = {
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
|
| 14 |
st.sidebar.title("Navigation")
|
| 15 |
selection = st.sidebar.radio("Pages", list(PAGES.keys()))
|
| 16 |
|
| 17 |
page = PAGES[selection]
|
| 18 |
-
with st.spinner(f"Loading {selection} ..."):
|
| 19 |
-
|
| 20 |
|
| 21 |
st.sidebar.header("Info")
|
| 22 |
st.sidebar.write("Made by [Wissam Antoun](https://twitter.com/wissam_antoun)")
|
| 23 |
-
st.sidebar.write(
|
| 24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import awesome_streamlit as ast
|
| 2 |
+
import streamlit as st
|
|
|
|
| 3 |
|
| 4 |
+
import backend.aragpt
|
| 5 |
+
import backend.home
|
| 6 |
+
import backend.processor
|
| 7 |
|
| 8 |
st.set_page_config(
|
| 9 |
page_title="TEST", page_icon="📖", initial_sidebar_state="expanded", layout="wide"
|
| 10 |
)
|
| 11 |
|
| 12 |
+
PAGES = {
|
| 13 |
+
"Home": backend.home,
|
| 14 |
+
"Arabic Text Preprocessor": backend.processor,
|
| 15 |
+
"Arabic Language Generation": backend.aragpt,
|
| 16 |
+
}
|
| 17 |
|
| 18 |
|
| 19 |
st.sidebar.title("Navigation")
|
| 20 |
selection = st.sidebar.radio("Pages", list(PAGES.keys()))
|
| 21 |
|
| 22 |
page = PAGES[selection]
|
| 23 |
+
# with st.spinner(f"Loading {selection} ..."):
|
| 24 |
+
ast.shared.components.write_page(page)
|
| 25 |
|
| 26 |
st.sidebar.header("Info")
|
| 27 |
st.sidebar.write("Made by [Wissam Antoun](https://twitter.com/wissam_antoun)")
|
| 28 |
+
st.sidebar.write(
|
| 29 |
+
"Pre-trained models are available on [HF Hub](https://huggingface.co/aubmindlab)"
|
| 30 |
+
)
|
| 31 |
+
st.sidebar.write(
|
| 32 |
+
"Models source code available on [GitHub](https://github.com/aub-mind/arabert)"
|
| 33 |
+
)
|
| 34 |
+
st.sidebar.write(
|
| 35 |
+
"App source code available on [GitHub](https://github.com/WissamAntoun/Arabic-NLP-app)"
|
| 36 |
+
)
|
backend.py
DELETED
|
File without changes
|
{pages → backend}/__init__.py
RENAMED
|
File without changes
|
backend/aragpt.py
ADDED
|
@@ -0,0 +1,182 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
from .services import TextGeneration
|
| 3 |
+
from tokenizers import Tokenizer
|
| 4 |
+
from functools import lru_cache
|
| 5 |
+
|
| 6 |
+
# @st.cache(allow_output_mutation=False, hash_funcs={Tokenizer: str})
|
| 7 |
+
@lru_cache(maxsize=1)
|
| 8 |
+
def load_text_generator():
|
| 9 |
+
generator = TextGeneration()
|
| 10 |
+
generator.load()
|
| 11 |
+
return generator
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
generator = load_text_generator()
|
| 15 |
+
|
| 16 |
+
qa_prompt = """
|
| 17 |
+
أجب عن السؤال التالي:
|
| 18 |
+
"""
|
| 19 |
+
qa_prompt_post = """ الجواب هو """
|
| 20 |
+
qa_prompt_post_year = """ في سنة: """
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
def write():
|
| 24 |
+
# Sidebar
|
| 25 |
+
|
| 26 |
+
# Taken from https://huggingface.co/spaces/flax-community/spanish-gpt2/blob/main/app.py
|
| 27 |
+
st.sidebar.subheader("Configurable parameters")
|
| 28 |
+
|
| 29 |
+
model_name = st.sidebar.selectbox(
|
| 30 |
+
"Model Selector",
|
| 31 |
+
options=[
|
| 32 |
+
"AraGPT2-Base",
|
| 33 |
+
"AraGPT2-Medium",
|
| 34 |
+
"Aragpt2-Large",
|
| 35 |
+
"AraGPT2-Mega",
|
| 36 |
+
],
|
| 37 |
+
index=0,
|
| 38 |
+
)
|
| 39 |
+
|
| 40 |
+
max_new_tokens = st.sidebar.number_input(
|
| 41 |
+
"Maximum length",
|
| 42 |
+
min_value=0,
|
| 43 |
+
max_value=1024,
|
| 44 |
+
value=100,
|
| 45 |
+
help="The maximum length of the sequence to be generated.",
|
| 46 |
+
)
|
| 47 |
+
temp = st.sidebar.slider(
|
| 48 |
+
"Temperature",
|
| 49 |
+
value=1.0,
|
| 50 |
+
min_value=0.1,
|
| 51 |
+
max_value=100.0,
|
| 52 |
+
help="The value used to module the next token probabilities.",
|
| 53 |
+
)
|
| 54 |
+
top_k = st.sidebar.number_input(
|
| 55 |
+
"Top k",
|
| 56 |
+
value=10,
|
| 57 |
+
help="The number of highest probability vocabulary tokens to keep for top-k-filtering.",
|
| 58 |
+
)
|
| 59 |
+
top_p = st.sidebar.number_input(
|
| 60 |
+
"Top p",
|
| 61 |
+
value=0.95,
|
| 62 |
+
help=" If set to float < 1, only the most probable tokens with probabilities that add up to top_p or higher are kept for generation.",
|
| 63 |
+
)
|
| 64 |
+
do_sample = st.sidebar.selectbox(
|
| 65 |
+
"Sampling?",
|
| 66 |
+
(True, False),
|
| 67 |
+
help="Whether or not to use sampling; use greedy decoding otherwise.",
|
| 68 |
+
)
|
| 69 |
+
num_beams = st.sidebar.number_input(
|
| 70 |
+
"Number of beams",
|
| 71 |
+
min_value=1,
|
| 72 |
+
max_value=10,
|
| 73 |
+
value=3,
|
| 74 |
+
help="The number of beams to use for beam search.",
|
| 75 |
+
)
|
| 76 |
+
repetition_penalty = st.sidebar.number_input(
|
| 77 |
+
"Repetition Penalty",
|
| 78 |
+
min_value=0.0,
|
| 79 |
+
value=3.0,
|
| 80 |
+
step=0.1,
|
| 81 |
+
help="The parameter for repetition penalty. 1.0 means no penalty",
|
| 82 |
+
)
|
| 83 |
+
no_repeat_ngram_size = st.sidebar.number_input(
|
| 84 |
+
"No Repear N-Gram Size",
|
| 85 |
+
min_value=0,
|
| 86 |
+
value=3,
|
| 87 |
+
help="If set to int > 0, all ngrams of that size can only occur once.",
|
| 88 |
+
)
|
| 89 |
+
|
| 90 |
+
st.write("#")
|
| 91 |
+
|
| 92 |
+
col = st.beta_columns(2)
|
| 93 |
+
|
| 94 |
+
col[0].image("images/AraGPT2.png", width=200)
|
| 95 |
+
|
| 96 |
+
st.markdown(
|
| 97 |
+
"""
|
| 98 |
+
|
| 99 |
+
<h3 style="text-align:left;">AraGPT2 is GPT2 model trained from scratch on 77GB of Arabic text.</h3>
|
| 100 |
+
<h4 style="text-align:left;"> More details in our <a href="https://github.com/aub-mind/arabert/tree/master/aragpt2">repo</a>.</h4>
|
| 101 |
+
|
| 102 |
+
<p style="text-align:left;"><p>
|
| 103 |
+
<p style="text-align:left;">Use the generation paramters on the sidebar to adjust generation quality.</p>
|
| 104 |
+
<p style="text-align:right;"><p>
|
| 105 |
+
""",
|
| 106 |
+
unsafe_allow_html=True,
|
| 107 |
+
)
|
| 108 |
+
|
| 109 |
+
# col[0].write(
|
| 110 |
+
# "AraGPT2 is trained from screatch on 77GB of Arabic text. More details in our [repo](https://github.com/aub-mind/arabert/tree/master/aragpt2)."
|
| 111 |
+
# )
|
| 112 |
+
# st.write("## Generate Arabic Text")
|
| 113 |
+
|
| 114 |
+
st.markdown(
|
| 115 |
+
"""
|
| 116 |
+
<style>
|
| 117 |
+
p, div, input, label, textarea{
|
| 118 |
+
text-align: right;
|
| 119 |
+
}
|
| 120 |
+
</style>
|
| 121 |
+
""",
|
| 122 |
+
unsafe_allow_html=True,
|
| 123 |
+
)
|
| 124 |
+
|
| 125 |
+
prompt = st.text_area(
|
| 126 |
+
"Prompt",
|
| 127 |
+
"يحكى أن مزارعا مخادعا قام ببيع بئر الماء الموجود في أرضه لجاره مقابل مبلغ كبير من المال",
|
| 128 |
+
)
|
| 129 |
+
if st.button("Generate"):
|
| 130 |
+
with st.spinner("Generating..."):
|
| 131 |
+
generated_text = generator.generate(
|
| 132 |
+
prompt=prompt,
|
| 133 |
+
model_name=model_name,
|
| 134 |
+
max_new_tokens=max_new_tokens,
|
| 135 |
+
temperature=temp,
|
| 136 |
+
top_k=top_k,
|
| 137 |
+
top_p=top_p,
|
| 138 |
+
repetition_penalty=repetition_penalty,
|
| 139 |
+
do_sample=do_sample,
|
| 140 |
+
num_beams=num_beams,
|
| 141 |
+
no_repeat_ngram_size=no_repeat_ngram_size,
|
| 142 |
+
)
|
| 143 |
+
st.write(generated_text)
|
| 144 |
+
|
| 145 |
+
st.markdown("---")
|
| 146 |
+
st.subheader("")
|
| 147 |
+
st.markdown(
|
| 148 |
+
"""
|
| 149 |
+
<p style="text-align:left;"><p>
|
| 150 |
+
<h2 style="text-align:left;">Zero-Shot Question Answering</h2>
|
| 151 |
+
|
| 152 |
+
<p style="text-align:left;">Adjust the maximum length to closely match the expected output length. Setting the Sampling paramter to False is recommended</p>
|
| 153 |
+
<p style="text-align:left;"><p>
|
| 154 |
+
""",
|
| 155 |
+
unsafe_allow_html=True,
|
| 156 |
+
)
|
| 157 |
+
|
| 158 |
+
question = st.text_input(
|
| 159 |
+
"Question", "من كان رئيس ألمانيا النازية في الحرب العالمية ��لثانية ؟"
|
| 160 |
+
)
|
| 161 |
+
is_date = st.checkbox("Help the model: Is the answer a date?")
|
| 162 |
+
if st.button("Answer"):
|
| 163 |
+
|
| 164 |
+
prompt = qa_prompt + question + qa_prompt_post
|
| 165 |
+
if is_date:
|
| 166 |
+
prompt += qa_prompt_post_year
|
| 167 |
+
else:
|
| 168 |
+
prompt += " : "
|
| 169 |
+
with st.spinner("Thinking..."):
|
| 170 |
+
answer = generator.generate(
|
| 171 |
+
prompt=prompt,
|
| 172 |
+
model_name=model_name,
|
| 173 |
+
max_new_tokens=max_new_tokens,
|
| 174 |
+
temperature=temp,
|
| 175 |
+
top_k=top_k,
|
| 176 |
+
top_p=top_p,
|
| 177 |
+
repetition_penalty=repetition_penalty,
|
| 178 |
+
do_sample=do_sample,
|
| 179 |
+
num_beams=num_beams,
|
| 180 |
+
no_repeat_ngram_size=no_repeat_ngram_size,
|
| 181 |
+
)
|
| 182 |
+
st.write(answer)
|
{pages → backend}/home.py
RENAMED
|
File without changes
|
backend/modeling_gpt2.py
ADDED
|
@@ -0,0 +1,1196 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# Copyright 2018 The OpenAI Team Authors and HuggingFace Inc. team.
|
| 3 |
+
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
| 4 |
+
#
|
| 5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 6 |
+
# you may not use this file except in compliance with the License.
|
| 7 |
+
# You may obtain a copy of the License at
|
| 8 |
+
#
|
| 9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 10 |
+
#
|
| 11 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 14 |
+
# See the License for the specific language governing permissions and
|
| 15 |
+
# limitations under the License.
|
| 16 |
+
|
| 17 |
+
"""
|
| 18 |
+
PyTorch OpenAI GPT-2 model.
|
| 19 |
+
Adapted from https://github.com/huggingface/transformers/blob/v4.0.1/src/transformers/models/gpt2/modeling_gpt2.py
|
| 20 |
+
and https://github.com/ghosthamlet/gpt2-ml-torch/blob/master/gpt2_ml_torch/modeling_gpt2.py
|
| 21 |
+
"""
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
import logging
|
| 25 |
+
import os
|
| 26 |
+
|
| 27 |
+
from dataclasses import dataclass
|
| 28 |
+
from typing import List, Optional, Tuple
|
| 29 |
+
|
| 30 |
+
import torch
|
| 31 |
+
import torch.nn as nn
|
| 32 |
+
from torch.nn import CrossEntropyLoss, MSELoss
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
from transformers.activations import ACT2FN
|
| 37 |
+
from transformers import GPT2Config
|
| 38 |
+
|
| 39 |
+
from transformers.modeling_utils import (
|
| 40 |
+
Conv1D,
|
| 41 |
+
PreTrainedModel,
|
| 42 |
+
SequenceSummary,
|
| 43 |
+
prune_conv1d_layer,
|
| 44 |
+
find_pruneable_heads_and_indices
|
| 45 |
+
)
|
| 46 |
+
|
| 47 |
+
from transformers import CONFIG_NAME, WEIGHTS_NAME, GPT2Config, GPT2Model
|
| 48 |
+
|
| 49 |
+
from transformers.modeling_outputs import (
|
| 50 |
+
BaseModelOutputWithPastAndCrossAttentions,
|
| 51 |
+
CausalLMOutputWithCrossAttentions,
|
| 52 |
+
SequenceClassifierOutputWithPast
|
| 53 |
+
)
|
| 54 |
+
|
| 55 |
+
from transformers.file_utils import (
|
| 56 |
+
ModelOutput,
|
| 57 |
+
add_start_docstrings,
|
| 58 |
+
add_start_docstrings_to_model_forward,
|
| 59 |
+
add_code_sample_docstrings,
|
| 60 |
+
replace_return_docstrings
|
| 61 |
+
)
|
| 62 |
+
|
| 63 |
+
# THe Difference from Transformers is code under _USE_GROVER
|
| 64 |
+
_USE_GROVER = True
|
| 65 |
+
|
| 66 |
+
logger = logging.getLogger(__name__)
|
| 67 |
+
|
| 68 |
+
_CONFIG_FOR_DOC = "GPT2Config"
|
| 69 |
+
_TOKENIZER_FOR_DOC = "GPT2Tokenizer"
|
| 70 |
+
|
| 71 |
+
GPT2_PRETRAINED_MODEL_ARCHIVE_LIST = [
|
| 72 |
+
"gpt2",
|
| 73 |
+
"gpt2-medium",
|
| 74 |
+
"gpt2-large",
|
| 75 |
+
"gpt2-xl",
|
| 76 |
+
"distilgpt2",
|
| 77 |
+
# See all GPT-2 models at https://huggingface.co/models?filter=gpt2
|
| 78 |
+
]
|
| 79 |
+
|
| 80 |
+
logger.setLevel(logging.INFO)
|
| 81 |
+
console = logging.StreamHandler()
|
| 82 |
+
console.setLevel(logging.INFO)
|
| 83 |
+
logger.addHandler(console)
|
| 84 |
+
|
| 85 |
+
_GPT2_ML_TF_TO_TORCH = {
|
| 86 |
+
'LayerNorm_embed_norm': 'emb_norm',
|
| 87 |
+
'pos_embed': 'wpe.weight',
|
| 88 |
+
'word_embed': 'wte.weight',
|
| 89 |
+
|
| 90 |
+
'layer': 'h',
|
| 91 |
+
# Most importently This two layer norm must be put on the same position as gpt2-ml
|
| 92 |
+
# or generated data is bad, just repeat the last token
|
| 93 |
+
'LayerNorm_mlp_ln0': 'ln_1',
|
| 94 |
+
'LayerNorm_mlp_ln1': 'ln_2',
|
| 95 |
+
'intermediate': 'mlp.c_fc',
|
| 96 |
+
'output': 'mlp.c_proj',
|
| 97 |
+
'query_layer': 'attn.c_attn',
|
| 98 |
+
'key_layer': 'attn.c_attn',
|
| 99 |
+
'value_layer': 'attn.c_attn',
|
| 100 |
+
'context_projection_layer': 'attn.c_proj',
|
| 101 |
+
|
| 102 |
+
'gamma': 'weight',
|
| 103 |
+
'kernel': 'weight',
|
| 104 |
+
'beta': 'bias',
|
| 105 |
+
'bias': 'bias',
|
| 106 |
+
}
|
| 107 |
+
|
| 108 |
+
|
| 109 |
+
def convert_gpt2_checkpoint_to_pytorch(gpt2_checkpoint_path, gpt2_config_file, pytorch_dump_folder_path):
|
| 110 |
+
# Construct model
|
| 111 |
+
if gpt2_config_file == "":
|
| 112 |
+
config = GPT2Config()
|
| 113 |
+
else:
|
| 114 |
+
config = GPT2Config.from_json_file(gpt2_config_file)
|
| 115 |
+
model = GPT2Model(config)
|
| 116 |
+
|
| 117 |
+
# Load weights from numpy
|
| 118 |
+
load_tf_weights_in_gpt2(model, config, gpt2_checkpoint_path)
|
| 119 |
+
|
| 120 |
+
# Save pytorch-model
|
| 121 |
+
pytorch_weights_dump_path = pytorch_dump_folder_path + "/" + WEIGHTS_NAME
|
| 122 |
+
pytorch_config_dump_path = pytorch_dump_folder_path + "/" + CONFIG_NAME
|
| 123 |
+
print("Save PyTorch model to {}".format(pytorch_weights_dump_path))
|
| 124 |
+
torch.save(model.state_dict(), pytorch_weights_dump_path)
|
| 125 |
+
print("Save configuration file to {}".format(pytorch_config_dump_path))
|
| 126 |
+
with open(pytorch_config_dump_path, "w", encoding="utf-8") as f:
|
| 127 |
+
f.write(config.to_json_string())
|
| 128 |
+
|
| 129 |
+
|
| 130 |
+
# XXX: MUST do like: convert_gpt2_checkpoint_to_pytorch('./model.ckpt-100000', './mega.json', './')
|
| 131 |
+
# https://github.com/tensorflow/models/issues/2675#issuecomment-516595597
|
| 132 |
+
def load_tf_weights_in_gpt2(model, config, gpt2_checkpoint_path):
|
| 133 |
+
""" Load tf checkpoints in a pytorch model
|
| 134 |
+
"""
|
| 135 |
+
try:
|
| 136 |
+
import re
|
| 137 |
+
import tensorflow as tf
|
| 138 |
+
except ImportError:
|
| 139 |
+
logger.error(
|
| 140 |
+
"Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see "
|
| 141 |
+
"https://www.tensorflow.org/install/ for installation instructions."
|
| 142 |
+
)
|
| 143 |
+
raise
|
| 144 |
+
tf_path = os.path.abspath(gpt2_checkpoint_path)
|
| 145 |
+
logger.info("Converting TensorFlow checkpoint from {}".format(tf_path))
|
| 146 |
+
# Load weights from TF model
|
| 147 |
+
init_vars = tf.train.list_variables(tf_path)
|
| 148 |
+
names = []
|
| 149 |
+
arrays = []
|
| 150 |
+
for name, shape in init_vars:
|
| 151 |
+
logger.info("Loading TF weight {} with shape {}".format(name, shape))
|
| 152 |
+
array = tf.train.load_variable(tf_path, name)
|
| 153 |
+
names.append(name)
|
| 154 |
+
arrays.append(array.squeeze())
|
| 155 |
+
|
| 156 |
+
import copy
|
| 157 |
+
orig_model = copy.deepcopy(model)
|
| 158 |
+
|
| 159 |
+
for name, array in zip(names, arrays):
|
| 160 |
+
name = name[6:] # skip "model/"
|
| 161 |
+
name = name.split("/")
|
| 162 |
+
pointer = model
|
| 163 |
+
|
| 164 |
+
attn_layer = ''
|
| 165 |
+
for m_name in name:
|
| 166 |
+
if re.fullmatch(r"[A-Za-z]+\d+", m_name):
|
| 167 |
+
scope_names = re.split(r"(\d+)", m_name)
|
| 168 |
+
else:
|
| 169 |
+
scope_names = [m_name]
|
| 170 |
+
sname = scope_names[0]
|
| 171 |
+
|
| 172 |
+
if sname == '' or sname == 'embeddings':
|
| 173 |
+
continue
|
| 174 |
+
elif sname not in _GPT2_ML_TF_TO_TORCH:
|
| 175 |
+
print('=========================================================')
|
| 176 |
+
logger.info('Skip var name {}'.format(scope_names))
|
| 177 |
+
pointer = None
|
| 178 |
+
break
|
| 179 |
+
else:
|
| 180 |
+
tname = _GPT2_ML_TF_TO_TORCH[sname]
|
| 181 |
+
if '.' in tname:
|
| 182 |
+
parent, child = tname.split('.')
|
| 183 |
+
pointer = getattr(pointer, parent)
|
| 184 |
+
pointer = getattr(pointer, child)
|
| 185 |
+
else:
|
| 186 |
+
pointer = getattr(pointer, tname)
|
| 187 |
+
|
| 188 |
+
if tname == 'attn.c_attn':
|
| 189 |
+
attn_layer = sname
|
| 190 |
+
|
| 191 |
+
if len(scope_names) >= 2:
|
| 192 |
+
num = int(scope_names[1])
|
| 193 |
+
pointer = pointer[num]
|
| 194 |
+
|
| 195 |
+
if pointer is None:
|
| 196 |
+
continue
|
| 197 |
+
if attn_layer == '':
|
| 198 |
+
try:
|
| 199 |
+
assert pointer.shape == array.shape
|
| 200 |
+
except AssertionError as e:
|
| 201 |
+
e.args += (pointer.shape, array.shape)
|
| 202 |
+
raise
|
| 203 |
+
logger.info("Initialize PyTorch weight {}, {}, {}".format(name, array.mean(), pointer.mean()))
|
| 204 |
+
if attn_layer == '':
|
| 205 |
+
pointer.data = torch.from_numpy(array)
|
| 206 |
+
else:
|
| 207 |
+
shape = pointer.shape
|
| 208 |
+
d = torch.from_numpy(array)
|
| 209 |
+
is_bias = len(shape) == 1
|
| 210 |
+
end = int(shape[0 if is_bias else 1]/3)
|
| 211 |
+
m = dict(
|
| 212 |
+
query_layer=0,
|
| 213 |
+
key_layer=end,
|
| 214 |
+
value_layer=end*2,
|
| 215 |
+
)
|
| 216 |
+
start = m[attn_layer]
|
| 217 |
+
end = start + end
|
| 218 |
+
if is_bias:
|
| 219 |
+
pointer.data[start:end] = d
|
| 220 |
+
else:
|
| 221 |
+
pointer.data[:, start:end] = d
|
| 222 |
+
logger.info("Initialize PyTorch weight {}, {}, {}".format(name, array.mean(), pointer.mean()))
|
| 223 |
+
|
| 224 |
+
for name, params in orig_model.named_parameters():
|
| 225 |
+
for n, p in model.named_parameters():
|
| 226 |
+
if name == n:
|
| 227 |
+
if params.equal(p):
|
| 228 |
+
print('--------------------------')
|
| 229 |
+
print(' %s not changed!' % n)
|
| 230 |
+
return model
|
| 231 |
+
|
| 232 |
+
|
| 233 |
+
class Attention(nn.Module):
|
| 234 |
+
def __init__(self, nx, n_ctx, config, scale=False, is_cross_attention=False):
|
| 235 |
+
super().__init__()
|
| 236 |
+
|
| 237 |
+
n_state = nx # in Attention: n_state=768 (nx=n_embd)
|
| 238 |
+
# [switch nx => n_state from Block to Attention to keep identical to TF implem]
|
| 239 |
+
assert n_state % config.n_head == 0
|
| 240 |
+
self.register_buffer(
|
| 241 |
+
"bias", torch.tril(torch.ones((n_ctx, n_ctx), dtype=torch.uint8)).view(1, 1, n_ctx, n_ctx)
|
| 242 |
+
)
|
| 243 |
+
self.register_buffer("masked_bias", torch.tensor(-1e4))
|
| 244 |
+
self.n_head = config.n_head
|
| 245 |
+
self.split_size = n_state
|
| 246 |
+
self.scale = scale
|
| 247 |
+
self.is_cross_attention = is_cross_attention
|
| 248 |
+
if self.is_cross_attention:
|
| 249 |
+
self.c_attn = Conv1D(2 * n_state, nx)
|
| 250 |
+
self.q_attn = Conv1D(n_state, nx)
|
| 251 |
+
else:
|
| 252 |
+
self.c_attn = Conv1D(3 * n_state, nx)
|
| 253 |
+
self.c_proj = Conv1D(n_state, nx)
|
| 254 |
+
self.attn_dropout = nn.Dropout(config.attn_pdrop)
|
| 255 |
+
self.resid_dropout = nn.Dropout(config.resid_pdrop)
|
| 256 |
+
self.pruned_heads = set()
|
| 257 |
+
|
| 258 |
+
def prune_heads(self, heads):
|
| 259 |
+
if len(heads) == 0:
|
| 260 |
+
return
|
| 261 |
+
heads, index = find_pruneable_heads_and_indices(
|
| 262 |
+
heads, self.n_head, self.split_size // self.n_head, self.pruned_heads
|
| 263 |
+
)
|
| 264 |
+
index_attn = torch.cat([index, index + self.split_size, index + (2 * self.split_size)])
|
| 265 |
+
|
| 266 |
+
# Prune conv1d layers
|
| 267 |
+
self.c_attn = prune_conv1d_layer(self.c_attn, index_attn, dim=1)
|
| 268 |
+
self.c_proj = prune_conv1d_layer(self.c_proj, index, dim=0)
|
| 269 |
+
|
| 270 |
+
# Update hyper params
|
| 271 |
+
self.split_size = (self.split_size // self.n_head) * (self.n_head - len(heads))
|
| 272 |
+
self.n_head = self.n_head - len(heads)
|
| 273 |
+
self.pruned_heads = self.pruned_heads.union(heads)
|
| 274 |
+
|
| 275 |
+
def _attn(self, q, k, v, attention_mask=None, head_mask=None, output_attentions=False):
|
| 276 |
+
w = torch.matmul(q, k)
|
| 277 |
+
if self.scale:
|
| 278 |
+
w = w / (float(v.size(-1)) ** 0.5)
|
| 279 |
+
nd, ns = w.size(-2), w.size(-1)
|
| 280 |
+
|
| 281 |
+
if not self.is_cross_attention:
|
| 282 |
+
# if only "normal" attention layer implements causal mask
|
| 283 |
+
mask = self.bias[:, :, ns - nd : ns, :ns]
|
| 284 |
+
w = torch.where(mask.bool(), w, self.masked_bias.to(w.dtype))
|
| 285 |
+
|
| 286 |
+
if attention_mask is not None:
|
| 287 |
+
# Apply the attention mask
|
| 288 |
+
w = w + attention_mask
|
| 289 |
+
|
| 290 |
+
w = nn.Softmax(dim=-1)(w)
|
| 291 |
+
w = self.attn_dropout(w)
|
| 292 |
+
|
| 293 |
+
# Mask heads if we want to
|
| 294 |
+
if head_mask is not None:
|
| 295 |
+
w = w * head_mask
|
| 296 |
+
|
| 297 |
+
outputs = [torch.matmul(w, v)]
|
| 298 |
+
if output_attentions:
|
| 299 |
+
outputs.append(w)
|
| 300 |
+
return outputs
|
| 301 |
+
|
| 302 |
+
def merge_heads(self, x):
|
| 303 |
+
x = x.permute(0, 2, 1, 3).contiguous()
|
| 304 |
+
new_x_shape = x.size()[:-2] + (x.size(-2) * x.size(-1),)
|
| 305 |
+
return x.view(*new_x_shape) # in Tensorflow implem: fct merge_states
|
| 306 |
+
|
| 307 |
+
def split_heads(self, x, k=False):
|
| 308 |
+
new_x_shape = x.size()[:-1] + (self.n_head, x.size(-1) // self.n_head)
|
| 309 |
+
x = x.view(*new_x_shape) # in Tensorflow implem: fct split_states
|
| 310 |
+
if k:
|
| 311 |
+
return x.permute(0, 2, 3, 1) # (batch, head, head_features, seq_length)
|
| 312 |
+
else:
|
| 313 |
+
return x.permute(0, 2, 1, 3) # (batch, head, seq_length, head_features)
|
| 314 |
+
|
| 315 |
+
def forward(
|
| 316 |
+
self,
|
| 317 |
+
hidden_states,
|
| 318 |
+
layer_past=None,
|
| 319 |
+
attention_mask=None,
|
| 320 |
+
head_mask=None,
|
| 321 |
+
encoder_hidden_states=None,
|
| 322 |
+
encoder_attention_mask=None,
|
| 323 |
+
use_cache=False,
|
| 324 |
+
output_attentions=False,
|
| 325 |
+
):
|
| 326 |
+
if encoder_hidden_states is not None:
|
| 327 |
+
assert hasattr(
|
| 328 |
+
self, "q_attn"
|
| 329 |
+
), "If class is used as cross attention, the weights `q_attn` have to be defined. Please make sure to instantiate class with `Attention(..., is_cross_attention=True)`."
|
| 330 |
+
query = self.q_attn(hidden_states)
|
| 331 |
+
key, value = self.c_attn(encoder_hidden_states).split(self.split_size, dim=2)
|
| 332 |
+
attention_mask = encoder_attention_mask
|
| 333 |
+
else:
|
| 334 |
+
query, key, value = self.c_attn(hidden_states).split(self.split_size, dim=2)
|
| 335 |
+
|
| 336 |
+
query = self.split_heads(query)
|
| 337 |
+
key = self.split_heads(key, k=True)
|
| 338 |
+
value = self.split_heads(value)
|
| 339 |
+
if layer_past is not None:
|
| 340 |
+
past_key, past_value = layer_past[0].transpose(-2, -1), layer_past[1] # transpose back cf below
|
| 341 |
+
key = torch.cat((past_key, key), dim=-1)
|
| 342 |
+
value = torch.cat((past_value, value), dim=-2)
|
| 343 |
+
|
| 344 |
+
if use_cache is True:
|
| 345 |
+
present = torch.stack((key.transpose(-2, -1), value)) # transpose to have same shapes for stacking
|
| 346 |
+
else:
|
| 347 |
+
present = (None,)
|
| 348 |
+
|
| 349 |
+
attn_outputs = self._attn(query, key, value, attention_mask, head_mask, output_attentions)
|
| 350 |
+
a = attn_outputs[0]
|
| 351 |
+
|
| 352 |
+
a = self.merge_heads(a)
|
| 353 |
+
a = self.c_proj(a)
|
| 354 |
+
a = self.resid_dropout(a)
|
| 355 |
+
|
| 356 |
+
outputs = [a, present] + attn_outputs[1:]
|
| 357 |
+
return outputs # a, present, (attentions)
|
| 358 |
+
|
| 359 |
+
|
| 360 |
+
class MLP(nn.Module):
|
| 361 |
+
def __init__(self, n_state, config): # in MLP: n_state=3072 (4 * n_embd)
|
| 362 |
+
super().__init__()
|
| 363 |
+
nx = config.n_embd
|
| 364 |
+
self.c_fc = Conv1D(n_state, nx)
|
| 365 |
+
self.c_proj = Conv1D(nx, n_state)
|
| 366 |
+
self.act = ACT2FN[config.activation_function]
|
| 367 |
+
self.dropout = nn.Dropout(config.resid_pdrop)
|
| 368 |
+
|
| 369 |
+
def forward(self, x):
|
| 370 |
+
h = self.act(self.c_fc(x))
|
| 371 |
+
h2 = self.c_proj(h)
|
| 372 |
+
return self.dropout(h2)
|
| 373 |
+
|
| 374 |
+
|
| 375 |
+
class Block(nn.Module):
|
| 376 |
+
def __init__(self, n_ctx, config, scale=False):
|
| 377 |
+
super().__init__()
|
| 378 |
+
hidden_size = config.n_embd
|
| 379 |
+
inner_dim = config.n_inner if config.n_inner is not None else 4 * hidden_size
|
| 380 |
+
self.ln_1 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
|
| 381 |
+
self.attn = Attention(hidden_size, n_ctx, config, scale)
|
| 382 |
+
self.ln_2 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
|
| 383 |
+
if config.add_cross_attention:
|
| 384 |
+
self.crossattention = Attention(hidden_size, n_ctx, config, scale, is_cross_attention=True)
|
| 385 |
+
self.ln_cross_attn = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
|
| 386 |
+
self.mlp = MLP(inner_dim, config)
|
| 387 |
+
|
| 388 |
+
def forward(
|
| 389 |
+
self,
|
| 390 |
+
hidden_states,
|
| 391 |
+
layer_past=None,
|
| 392 |
+
attention_mask=None,
|
| 393 |
+
head_mask=None,
|
| 394 |
+
encoder_hidden_states=None,
|
| 395 |
+
encoder_attention_mask=None,
|
| 396 |
+
use_cache=False,
|
| 397 |
+
output_attentions=False,
|
| 398 |
+
):
|
| 399 |
+
attn_outputs = self.attn(
|
| 400 |
+
hidden_states,
|
| 401 |
+
layer_past=layer_past,
|
| 402 |
+
attention_mask=attention_mask,
|
| 403 |
+
head_mask=head_mask,
|
| 404 |
+
use_cache=use_cache,
|
| 405 |
+
output_attentions=output_attentions,
|
| 406 |
+
)
|
| 407 |
+
attn_output = attn_outputs[0] # output_attn: a, present, (attentions)
|
| 408 |
+
outputs = attn_outputs[1:]
|
| 409 |
+
# residual connection
|
| 410 |
+
hidden_states = attn_output + hidden_states
|
| 411 |
+
|
| 412 |
+
if encoder_hidden_states is not None:
|
| 413 |
+
# add one self-attention block for cross-attention
|
| 414 |
+
assert hasattr(
|
| 415 |
+
self, "crossattention"
|
| 416 |
+
), f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers by setting `config.add_cross_attention=True`"
|
| 417 |
+
cross_attn_outputs = self.crossattention(
|
| 418 |
+
self.ln_cross_attn(hidden_states),
|
| 419 |
+
attention_mask=attention_mask,
|
| 420 |
+
head_mask=head_mask,
|
| 421 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 422 |
+
encoder_attention_mask=encoder_attention_mask,
|
| 423 |
+
output_attentions=output_attentions,
|
| 424 |
+
)
|
| 425 |
+
attn_output = cross_attn_outputs[0]
|
| 426 |
+
# residual connection
|
| 427 |
+
hidden_states = hidden_states + attn_output
|
| 428 |
+
outputs = outputs + cross_attn_outputs[2:] # add cross attentions if we output attention weights
|
| 429 |
+
|
| 430 |
+
feed_forward_hidden_states = self.mlp(self.ln_1(hidden_states))
|
| 431 |
+
# residual connection
|
| 432 |
+
hidden_states = hidden_states + feed_forward_hidden_states
|
| 433 |
+
|
| 434 |
+
hidden_states = self.ln_2(hidden_states)
|
| 435 |
+
|
| 436 |
+
outputs = [hidden_states] + outputs
|
| 437 |
+
return outputs # hidden_states, present, (attentions, cross_attentions)
|
| 438 |
+
|
| 439 |
+
|
| 440 |
+
class GPT2PreTrainedModel(PreTrainedModel):
|
| 441 |
+
"""
|
| 442 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
| 443 |
+
models.
|
| 444 |
+
"""
|
| 445 |
+
|
| 446 |
+
config_class = GPT2Config
|
| 447 |
+
load_tf_weights = load_tf_weights_in_gpt2
|
| 448 |
+
base_model_prefix = "transformer"
|
| 449 |
+
|
| 450 |
+
def __init__(self, *inputs, **kwargs):
|
| 451 |
+
super().__init__(*inputs, **kwargs)
|
| 452 |
+
|
| 453 |
+
def _init_weights(self, module):
|
| 454 |
+
"""Initialize the weights."""
|
| 455 |
+
if isinstance(module, (nn.Linear, nn.Embedding, Conv1D)):
|
| 456 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
| 457 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
| 458 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
| 459 |
+
if isinstance(module, (nn.Linear, Conv1D)) and module.bias is not None:
|
| 460 |
+
module.bias.data.zero_()
|
| 461 |
+
elif isinstance(module, nn.LayerNorm):
|
| 462 |
+
module.bias.data.zero_()
|
| 463 |
+
module.weight.data.fill_(1.0)
|
| 464 |
+
|
| 465 |
+
|
| 466 |
+
@dataclass
|
| 467 |
+
class GPT2DoubleHeadsModelOutput(ModelOutput):
|
| 468 |
+
"""
|
| 469 |
+
Base class for outputs of models predicting if two sentences are consecutive or not.
|
| 470 |
+
|
| 471 |
+
Args:
|
| 472 |
+
loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when ``labels`` is provided):
|
| 473 |
+
Language modeling loss.
|
| 474 |
+
mc_loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when :obj:`mc_labels` is provided):
|
| 475 |
+
Multiple choice classification loss.
|
| 476 |
+
logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, num_choices, sequence_length, config.vocab_size)`):
|
| 477 |
+
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
| 478 |
+
mc_logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, num_choices)`):
|
| 479 |
+
Prediction scores of the multiple choice classification head (scores for each choice before SoftMax).
|
| 480 |
+
past_key_values (:obj:`List[torch.FloatTensor]`, `optional`, returned when ``use_cache=True`` is passed or when ``config.use_cache=True``):
|
| 481 |
+
List of :obj:`torch.FloatTensor` of length :obj:`config.n_layers`, with each tensor of shape :obj:`(2,
|
| 482 |
+
batch_size, num_heads, sequence_length, embed_size_per_head)`).
|
| 483 |
+
|
| 484 |
+
Contains pre-computed hidden-states (key and values in the attention blocks) that can be used (see
|
| 485 |
+
:obj:`past_key_values` input) to speed up sequential decoding.
|
| 486 |
+
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
| 487 |
+
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
|
| 488 |
+
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
| 489 |
+
|
| 490 |
+
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
| 491 |
+
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
|
| 492 |
+
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads,
|
| 493 |
+
sequence_length, sequence_length)`.
|
| 494 |
+
|
| 495 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
| 496 |
+
heads.
|
| 497 |
+
"""
|
| 498 |
+
|
| 499 |
+
loss: Optional[torch.FloatTensor] = None
|
| 500 |
+
mc_loss: Optional[torch.FloatTensor] = None
|
| 501 |
+
logits: torch.FloatTensor = None
|
| 502 |
+
mc_logits: torch.FloatTensor = None
|
| 503 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None
|
| 504 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
| 505 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
| 506 |
+
|
| 507 |
+
|
| 508 |
+
GPT2_START_DOCSTRING = r"""
|
| 509 |
+
|
| 510 |
+
This model inherits from :class:`~transformers.PreTrainedModel`. Check the superclass documentation for the generic
|
| 511 |
+
methods the library implements for all its model (such as downloading or saving, resizing the input embeddings,
|
| 512 |
+
pruning heads etc.)
|
| 513 |
+
|
| 514 |
+
This model is also a PyTorch `torch.nn.Module <https://pytorch.org/docs/stable/nn.html#torch.nn.Module>`__
|
| 515 |
+
subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to
|
| 516 |
+
general usage and behavior.
|
| 517 |
+
|
| 518 |
+
Parameters:
|
| 519 |
+
config (:class:`~transformers.GPT2Config`): Model configuration class with all the parameters of the model.
|
| 520 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
| 521 |
+
configuration. Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model
|
| 522 |
+
weights.
|
| 523 |
+
"""
|
| 524 |
+
|
| 525 |
+
GPT2_INPUTS_DOCSTRING = r"""
|
| 526 |
+
Args:
|
| 527 |
+
input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, input_ids_length)`):
|
| 528 |
+
:obj:`input_ids_length` = ``sequence_length`` if :obj:`past_key_values` is ``None`` else
|
| 529 |
+
``past_key_values[0].shape[-2]`` (``sequence_length`` of input past key value states). Indices of input
|
| 530 |
+
sequence tokens in the vocabulary.
|
| 531 |
+
|
| 532 |
+
If :obj:`past_key_values` is used, only ``input_ids`` that do not have their past calculated should be
|
| 533 |
+
passed as ``input_ids``.
|
| 534 |
+
|
| 535 |
+
Indices can be obtained using :class:`~transformers.GPT2Tokenizer`. See
|
| 536 |
+
:meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__` for
|
| 537 |
+
details.
|
| 538 |
+
|
| 539 |
+
`What are input IDs? <../glossary.html#input-ids>`__
|
| 540 |
+
past_key_values (:obj:`List[torch.FloatTensor]` of length :obj:`config.n_layers`):
|
| 541 |
+
Contains precomputed hidden-states (key and values in the attention blocks) as computed by the model (see
|
| 542 |
+
:obj:`past_key_values` output below). Can be used to speed up sequential decoding. The ``input_ids`` which
|
| 543 |
+
have their past given to this model should not be passed as ``input_ids`` as they have already been
|
| 544 |
+
computed.
|
| 545 |
+
attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
|
| 546 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``:
|
| 547 |
+
|
| 548 |
+
- 1 for tokens that are **not masked**,
|
| 549 |
+
- 0 for tokens that are **masked**.
|
| 550 |
+
|
| 551 |
+
`What are attention masks? <../glossary.html#attention-mask>`__
|
| 552 |
+
token_type_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, input_ids_length)`, `optional`):
|
| 553 |
+
Segment token indices to indicate first and second portions of the inputs. Indices are selected in ``[0,
|
| 554 |
+
1]``:
|
| 555 |
+
|
| 556 |
+
- 0 corresponds to a `sentence A` token,
|
| 557 |
+
- 1 corresponds to a `sentence B` token.
|
| 558 |
+
|
| 559 |
+
`What are token type IDs? <../glossary.html#token-type-ids>`_
|
| 560 |
+
position_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
|
| 561 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range ``[0,
|
| 562 |
+
config.max_position_embeddings - 1]``.
|
| 563 |
+
|
| 564 |
+
`What are position IDs? <../glossary.html#position-ids>`_
|
| 565 |
+
head_mask (:obj:`torch.FloatTensor` of shape :obj:`(num_heads,)` or :obj:`(num_layers, num_heads)`, `optional`):
|
| 566 |
+
Mask to nullify selected heads of the self-attention modules. Mask values selected in ``[0, 1]``:
|
| 567 |
+
|
| 568 |
+
- 1 indicates the head is **not masked**,
|
| 569 |
+
- 0 indicates the head is **masked**.
|
| 570 |
+
|
| 571 |
+
inputs_embeds (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
|
| 572 |
+
Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation.
|
| 573 |
+
This is useful if you want more control over how to convert :obj:`input_ids` indices into associated
|
| 574 |
+
vectors than the model's internal embedding lookup matrix.
|
| 575 |
+
|
| 576 |
+
If :obj:`past_key_values` is used, optionally only the last :obj:`inputs_embeds` have to be input (see
|
| 577 |
+
:obj:`past_key_values`).
|
| 578 |
+
use_cache (:obj:`bool`, `optional`):
|
| 579 |
+
If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up
|
| 580 |
+
decoding (see :obj:`past_key_values`).
|
| 581 |
+
output_attentions (:obj:`bool`, `optional`):
|
| 582 |
+
Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under returned
|
| 583 |
+
tensors for more detail.
|
| 584 |
+
output_hidden_states (:obj:`bool`, `optional`):
|
| 585 |
+
Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors for
|
| 586 |
+
more detail.
|
| 587 |
+
return_dict (:obj:`bool`, `optional`):
|
| 588 |
+
Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple.
|
| 589 |
+
"""
|
| 590 |
+
|
| 591 |
+
|
| 592 |
+
@add_start_docstrings(
|
| 593 |
+
"The bare GPT2 Model transformer outputting raw hidden-states without any specific head on top.",
|
| 594 |
+
GPT2_START_DOCSTRING,
|
| 595 |
+
)
|
| 596 |
+
class GPT2Model(GPT2PreTrainedModel):
|
| 597 |
+
def __init__(self, config):
|
| 598 |
+
super().__init__(config)
|
| 599 |
+
|
| 600 |
+
self.wte = nn.Embedding(config.vocab_size, config.n_embd)
|
| 601 |
+
self.wpe = nn.Embedding(config.n_positions, config.n_embd)
|
| 602 |
+
if _USE_GROVER:
|
| 603 |
+
self.emb_norm = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
|
| 604 |
+
|
| 605 |
+
self.drop = nn.Dropout(config.embd_pdrop)
|
| 606 |
+
self.h = nn.ModuleList([Block(config.n_ctx, config, scale=True) for _ in range(config.n_layer)])
|
| 607 |
+
if not _USE_GROVER:
|
| 608 |
+
self.ln_f = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
|
| 609 |
+
|
| 610 |
+
self.init_weights()
|
| 611 |
+
|
| 612 |
+
def get_input_embeddings(self):
|
| 613 |
+
return self.wte
|
| 614 |
+
|
| 615 |
+
def set_input_embeddings(self, new_embeddings):
|
| 616 |
+
self.wte = new_embeddings
|
| 617 |
+
|
| 618 |
+
def _prune_heads(self, heads_to_prune):
|
| 619 |
+
"""
|
| 620 |
+
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
|
| 621 |
+
"""
|
| 622 |
+
for layer, heads in heads_to_prune.items():
|
| 623 |
+
self.h[layer].attn.prune_heads(heads)
|
| 624 |
+
|
| 625 |
+
@add_start_docstrings_to_model_forward(GPT2_INPUTS_DOCSTRING)
|
| 626 |
+
@add_code_sample_docstrings(
|
| 627 |
+
tokenizer_class=_TOKENIZER_FOR_DOC,
|
| 628 |
+
checkpoint="gpt2",
|
| 629 |
+
output_type=BaseModelOutputWithPastAndCrossAttentions,
|
| 630 |
+
config_class=_CONFIG_FOR_DOC,
|
| 631 |
+
)
|
| 632 |
+
def forward(
|
| 633 |
+
self,
|
| 634 |
+
input_ids=None,
|
| 635 |
+
past_key_values=None,
|
| 636 |
+
attention_mask=None,
|
| 637 |
+
token_type_ids=None,
|
| 638 |
+
position_ids=None,
|
| 639 |
+
head_mask=None,
|
| 640 |
+
inputs_embeds=None,
|
| 641 |
+
encoder_hidden_states=None,
|
| 642 |
+
encoder_attention_mask=None,
|
| 643 |
+
use_cache=None,
|
| 644 |
+
output_attentions=None,
|
| 645 |
+
output_hidden_states=None,
|
| 646 |
+
return_dict=None,
|
| 647 |
+
):
|
| 648 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 649 |
+
output_hidden_states = (
|
| 650 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 651 |
+
)
|
| 652 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
| 653 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 654 |
+
|
| 655 |
+
if input_ids is not None and inputs_embeds is not None:
|
| 656 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
| 657 |
+
elif input_ids is not None:
|
| 658 |
+
input_shape = input_ids.size()
|
| 659 |
+
input_ids = input_ids.view(-1, input_shape[-1])
|
| 660 |
+
batch_size = input_ids.shape[0]
|
| 661 |
+
elif inputs_embeds is not None:
|
| 662 |
+
input_shape = inputs_embeds.size()[:-1]
|
| 663 |
+
batch_size = inputs_embeds.shape[0]
|
| 664 |
+
else:
|
| 665 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
| 666 |
+
|
| 667 |
+
if token_type_ids is not None:
|
| 668 |
+
token_type_ids = token_type_ids.view(-1, input_shape[-1])
|
| 669 |
+
if position_ids is not None:
|
| 670 |
+
position_ids = position_ids.view(-1, input_shape[-1])
|
| 671 |
+
|
| 672 |
+
if past_key_values is None:
|
| 673 |
+
past_length = 0
|
| 674 |
+
past_key_values = [None] * len(self.h)
|
| 675 |
+
else:
|
| 676 |
+
past_length = past_key_values[0][0].size(-2)
|
| 677 |
+
if position_ids is None:
|
| 678 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
| 679 |
+
position_ids = torch.arange(past_length, input_shape[-1] + past_length, dtype=torch.long, device=device)
|
| 680 |
+
position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1])
|
| 681 |
+
|
| 682 |
+
# Attention mask.
|
| 683 |
+
if attention_mask is not None:
|
| 684 |
+
assert batch_size > 0, "batch_size has to be defined and > 0"
|
| 685 |
+
attention_mask = attention_mask.view(batch_size, -1)
|
| 686 |
+
# We create a 3D attention mask from a 2D tensor mask.
|
| 687 |
+
# Sizes are [batch_size, 1, 1, to_seq_length]
|
| 688 |
+
# So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
|
| 689 |
+
# this attention mask is more simple than the triangular masking of causal attention
|
| 690 |
+
# used in OpenAI GPT, we just need to prepare the broadcast dimension here.
|
| 691 |
+
attention_mask = attention_mask[:, None, None, :]
|
| 692 |
+
|
| 693 |
+
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
|
| 694 |
+
# masked positions, this operation will create a tensor which is 0.0 for
|
| 695 |
+
# positions we want to attend and -10000.0 for masked positions.
|
| 696 |
+
# Since we are adding it to the raw scores before the softmax, this is
|
| 697 |
+
# effectively the same as removing these entirely.
|
| 698 |
+
attention_mask = attention_mask.to(dtype=self.dtype) # fp16 compatibility
|
| 699 |
+
attention_mask = (1.0 - attention_mask) * -10000.0
|
| 700 |
+
|
| 701 |
+
# If a 2D ou 3D attention mask is provided for the cross-attention
|
| 702 |
+
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
| 703 |
+
if self.config.add_cross_attention and encoder_hidden_states is not None:
|
| 704 |
+
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
|
| 705 |
+
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
|
| 706 |
+
if encoder_attention_mask is None:
|
| 707 |
+
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
|
| 708 |
+
encoder_attention_mask = self.invert_attention_mask(encoder_attention_mask)
|
| 709 |
+
else:
|
| 710 |
+
encoder_attention_mask = None
|
| 711 |
+
|
| 712 |
+
# Prepare head mask if needed
|
| 713 |
+
# 1.0 in head_mask indicate we keep the head
|
| 714 |
+
# attention_probs has shape bsz x n_heads x N x N
|
| 715 |
+
# head_mask has shape n_layer x batch x n_heads x N x N
|
| 716 |
+
head_mask = self.get_head_mask(head_mask, self.config.n_layer)
|
| 717 |
+
|
| 718 |
+
if inputs_embeds is None:
|
| 719 |
+
inputs_embeds = self.wte(input_ids)
|
| 720 |
+
position_embeds = self.wpe(position_ids)
|
| 721 |
+
hidden_states = inputs_embeds + position_embeds
|
| 722 |
+
|
| 723 |
+
if token_type_ids is not None:
|
| 724 |
+
token_type_embeds = self.wte(token_type_ids)
|
| 725 |
+
hidden_states = hidden_states + token_type_embeds
|
| 726 |
+
|
| 727 |
+
hidden_states = self.drop(hidden_states)
|
| 728 |
+
if _USE_GROVER:
|
| 729 |
+
hidden_states = self.emb_norm(hidden_states)
|
| 730 |
+
output_shape = input_shape + (hidden_states.size(-1),)
|
| 731 |
+
|
| 732 |
+
presents = () if use_cache else None
|
| 733 |
+
all_self_attentions = () if output_attentions else None
|
| 734 |
+
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
|
| 735 |
+
all_hidden_states = () if output_hidden_states else None
|
| 736 |
+
for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
|
| 737 |
+
if output_hidden_states:
|
| 738 |
+
all_hidden_states = all_hidden_states + (hidden_states.view(*output_shape),)
|
| 739 |
+
|
| 740 |
+
if getattr(self.config, "gradient_checkpointing", False):
|
| 741 |
+
|
| 742 |
+
def create_custom_forward(module):
|
| 743 |
+
def custom_forward(*inputs):
|
| 744 |
+
# checkpointing only works with tuple returns, not with lists
|
| 745 |
+
return tuple(output for output in module(*inputs, use_cache, output_attentions))
|
| 746 |
+
|
| 747 |
+
return custom_forward
|
| 748 |
+
|
| 749 |
+
outputs = torch.utils.checkpoint.checkpoint(
|
| 750 |
+
create_custom_forward(block),
|
| 751 |
+
hidden_states,
|
| 752 |
+
layer_past,
|
| 753 |
+
attention_mask,
|
| 754 |
+
head_mask[i],
|
| 755 |
+
encoder_hidden_states,
|
| 756 |
+
encoder_attention_mask,
|
| 757 |
+
)
|
| 758 |
+
else:
|
| 759 |
+
outputs = block(
|
| 760 |
+
hidden_states,
|
| 761 |
+
layer_past=layer_past,
|
| 762 |
+
attention_mask=attention_mask,
|
| 763 |
+
head_mask=head_mask[i],
|
| 764 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 765 |
+
encoder_attention_mask=encoder_attention_mask,
|
| 766 |
+
use_cache=use_cache,
|
| 767 |
+
output_attentions=output_attentions,
|
| 768 |
+
)
|
| 769 |
+
|
| 770 |
+
hidden_states, present = outputs[:2]
|
| 771 |
+
if use_cache is True:
|
| 772 |
+
presents = presents + (present,)
|
| 773 |
+
|
| 774 |
+
if output_attentions:
|
| 775 |
+
all_self_attentions = all_self_attentions + (outputs[2],)
|
| 776 |
+
if self.config.add_cross_attention:
|
| 777 |
+
all_cross_attentions = all_cross_attentions + (outputs[3],)
|
| 778 |
+
|
| 779 |
+
if not _USE_GROVER:
|
| 780 |
+
hidden_states = self.ln_f(hidden_states)
|
| 781 |
+
|
| 782 |
+
hidden_states = hidden_states.view(*output_shape)
|
| 783 |
+
# Add last hidden state
|
| 784 |
+
if output_hidden_states:
|
| 785 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
| 786 |
+
|
| 787 |
+
if not return_dict:
|
| 788 |
+
return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None)
|
| 789 |
+
|
| 790 |
+
return BaseModelOutputWithPastAndCrossAttentions(
|
| 791 |
+
last_hidden_state=hidden_states,
|
| 792 |
+
past_key_values=presents,
|
| 793 |
+
hidden_states=all_hidden_states,
|
| 794 |
+
attentions=all_self_attentions,
|
| 795 |
+
cross_attentions=all_cross_attentions,
|
| 796 |
+
)
|
| 797 |
+
|
| 798 |
+
|
| 799 |
+
@add_start_docstrings(
|
| 800 |
+
"""
|
| 801 |
+
The GPT2 Model transformer with a language modeling head on top (linear layer with weights tied to the input
|
| 802 |
+
embeddings).
|
| 803 |
+
""",
|
| 804 |
+
GPT2_START_DOCSTRING,
|
| 805 |
+
)
|
| 806 |
+
class GPT2LMHeadModel(GPT2PreTrainedModel):
|
| 807 |
+
_keys_to_ignore_on_load_missing = [r"h\.\d+\.attn\.masked_bias", r"lm_head\.weight"]
|
| 808 |
+
|
| 809 |
+
def __init__(self, config):
|
| 810 |
+
super().__init__(config)
|
| 811 |
+
self.transformer = GPT2Model(config)
|
| 812 |
+
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
|
| 813 |
+
|
| 814 |
+
self.init_weights()
|
| 815 |
+
|
| 816 |
+
def get_output_embeddings(self):
|
| 817 |
+
return self.lm_head
|
| 818 |
+
|
| 819 |
+
def prepare_inputs_for_generation(self, input_ids, past=None, **kwargs):
|
| 820 |
+
token_type_ids = kwargs.get("token_type_ids", None)
|
| 821 |
+
# only last token for inputs_ids if past is defined in kwargs
|
| 822 |
+
if past:
|
| 823 |
+
input_ids = input_ids[:, -1].unsqueeze(-1)
|
| 824 |
+
if token_type_ids is not None:
|
| 825 |
+
token_type_ids = token_type_ids[:, -1].unsqueeze(-1)
|
| 826 |
+
|
| 827 |
+
attention_mask = kwargs.get("attention_mask", None)
|
| 828 |
+
position_ids = kwargs.get("position_ids", None)
|
| 829 |
+
|
| 830 |
+
if attention_mask is not None and position_ids is None:
|
| 831 |
+
# create position_ids on the fly for batch generation
|
| 832 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
| 833 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
| 834 |
+
if past:
|
| 835 |
+
position_ids = position_ids[:, -1].unsqueeze(-1)
|
| 836 |
+
else:
|
| 837 |
+
position_ids = None
|
| 838 |
+
return {
|
| 839 |
+
"input_ids": input_ids,
|
| 840 |
+
"past_key_values": past,
|
| 841 |
+
"use_cache": kwargs.get("use_cache"),
|
| 842 |
+
"position_ids": position_ids,
|
| 843 |
+
"attention_mask": attention_mask,
|
| 844 |
+
"token_type_ids": token_type_ids,
|
| 845 |
+
}
|
| 846 |
+
|
| 847 |
+
@add_start_docstrings_to_model_forward(GPT2_INPUTS_DOCSTRING)
|
| 848 |
+
@add_code_sample_docstrings(
|
| 849 |
+
tokenizer_class=_TOKENIZER_FOR_DOC,
|
| 850 |
+
checkpoint="gpt2",
|
| 851 |
+
output_type= CausalLMOutputWithCrossAttentions,
|
| 852 |
+
config_class=_CONFIG_FOR_DOC,
|
| 853 |
+
)
|
| 854 |
+
def forward(
|
| 855 |
+
self,
|
| 856 |
+
input_ids=None,
|
| 857 |
+
past_key_values=None,
|
| 858 |
+
attention_mask=None,
|
| 859 |
+
token_type_ids=None,
|
| 860 |
+
position_ids=None,
|
| 861 |
+
head_mask=None,
|
| 862 |
+
inputs_embeds=None,
|
| 863 |
+
encoder_hidden_states=None,
|
| 864 |
+
encoder_attention_mask=None,
|
| 865 |
+
labels=None,
|
| 866 |
+
use_cache=None,
|
| 867 |
+
output_attentions=None,
|
| 868 |
+
output_hidden_states=None,
|
| 869 |
+
return_dict=None,
|
| 870 |
+
):
|
| 871 |
+
r"""
|
| 872 |
+
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
|
| 873 |
+
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
|
| 874 |
+
``labels = input_ids`` Indices are selected in ``[-100, 0, ..., config.vocab_size]`` All labels set to
|
| 875 |
+
``-100`` are ignored (masked), the loss is only computed for labels in ``[0, ..., config.vocab_size]``
|
| 876 |
+
"""
|
| 877 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 878 |
+
|
| 879 |
+
transformer_outputs = self.transformer(
|
| 880 |
+
input_ids,
|
| 881 |
+
past_key_values=past_key_values,
|
| 882 |
+
attention_mask=attention_mask,
|
| 883 |
+
token_type_ids=token_type_ids,
|
| 884 |
+
position_ids=position_ids,
|
| 885 |
+
head_mask=head_mask,
|
| 886 |
+
inputs_embeds=inputs_embeds,
|
| 887 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 888 |
+
encoder_attention_mask=encoder_attention_mask,
|
| 889 |
+
use_cache=use_cache,
|
| 890 |
+
output_attentions=output_attentions,
|
| 891 |
+
output_hidden_states=output_hidden_states,
|
| 892 |
+
return_dict=return_dict,
|
| 893 |
+
)
|
| 894 |
+
hidden_states = transformer_outputs[0]
|
| 895 |
+
|
| 896 |
+
lm_logits = self.lm_head(hidden_states)
|
| 897 |
+
|
| 898 |
+
loss = None
|
| 899 |
+
if labels is not None:
|
| 900 |
+
# Shift so that tokens < n predict n
|
| 901 |
+
shift_logits = lm_logits[..., :-1, :].contiguous()
|
| 902 |
+
shift_labels = labels[..., 1:].contiguous()
|
| 903 |
+
# Flatten the tokens
|
| 904 |
+
loss_fct = CrossEntropyLoss()
|
| 905 |
+
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
|
| 906 |
+
|
| 907 |
+
if not return_dict:
|
| 908 |
+
output = (lm_logits,) + transformer_outputs[1:]
|
| 909 |
+
return ((loss,) + output) if loss is not None else output
|
| 910 |
+
|
| 911 |
+
return CausalLMOutputWithCrossAttentions(
|
| 912 |
+
loss=loss,
|
| 913 |
+
logits=lm_logits,
|
| 914 |
+
past_key_values=transformer_outputs.past_key_values,
|
| 915 |
+
hidden_states=transformer_outputs.hidden_states,
|
| 916 |
+
attentions=transformer_outputs.attentions,
|
| 917 |
+
cross_attentions=transformer_outputs.cross_attentions,
|
| 918 |
+
)
|
| 919 |
+
|
| 920 |
+
|
| 921 |
+
@add_start_docstrings(
|
| 922 |
+
"""
|
| 923 |
+
The GPT2 Model transformer with a language modeling and a multiple-choice classification head on top e.g. for
|
| 924 |
+
RocStories/SWAG tasks. The two heads are two linear layers. The language modeling head has its weights tied to the
|
| 925 |
+
input embeddings, the classification head takes as input the input of a specified classification token index in the
|
| 926 |
+
input sequence).
|
| 927 |
+
""",
|
| 928 |
+
GPT2_START_DOCSTRING,
|
| 929 |
+
)
|
| 930 |
+
class GPT2DoubleHeadsModel(GPT2PreTrainedModel):
|
| 931 |
+
def __init__(self, config):
|
| 932 |
+
super().__init__(config)
|
| 933 |
+
config.num_labels = 1
|
| 934 |
+
self.transformer = GPT2Model(config)
|
| 935 |
+
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
|
| 936 |
+
self.multiple_choice_head = SequenceSummary(config)
|
| 937 |
+
|
| 938 |
+
self.init_weights()
|
| 939 |
+
|
| 940 |
+
def get_output_embeddings(self):
|
| 941 |
+
return self.lm_head
|
| 942 |
+
|
| 943 |
+
def prepare_inputs_for_generation(self, input_ids, past=None, **kwargs):
|
| 944 |
+
token_type_ids = kwargs.get("token_type_ids", None)
|
| 945 |
+
# only last token for inputs_ids if past is defined in kwargs
|
| 946 |
+
if past:
|
| 947 |
+
input_ids = input_ids[:, -1].unsqueeze(-1)
|
| 948 |
+
if token_type_ids is not None:
|
| 949 |
+
token_type_ids = token_type_ids[:, -1].unsqueeze(-1)
|
| 950 |
+
|
| 951 |
+
attention_mask = kwargs.get("attention_mask", None)
|
| 952 |
+
position_ids = kwargs.get("position_ids", None)
|
| 953 |
+
|
| 954 |
+
if attention_mask is not None and position_ids is None:
|
| 955 |
+
# create position_ids on the fly for batch generation
|
| 956 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
| 957 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
| 958 |
+
if past:
|
| 959 |
+
position_ids = position_ids[:, -1].unsqueeze(-1)
|
| 960 |
+
else:
|
| 961 |
+
position_ids = None
|
| 962 |
+
|
| 963 |
+
return {
|
| 964 |
+
"input_ids": input_ids,
|
| 965 |
+
"past_key_values": past,
|
| 966 |
+
"use_cache": kwargs.get("use_cache"),
|
| 967 |
+
"position_ids": position_ids,
|
| 968 |
+
"attention_mask": attention_mask,
|
| 969 |
+
"token_type_ids": token_type_ids,
|
| 970 |
+
}
|
| 971 |
+
|
| 972 |
+
@add_start_docstrings_to_model_forward(GPT2_INPUTS_DOCSTRING)
|
| 973 |
+
@replace_return_docstrings(output_type=GPT2DoubleHeadsModelOutput, config_class=_CONFIG_FOR_DOC)
|
| 974 |
+
def forward(
|
| 975 |
+
self,
|
| 976 |
+
input_ids=None,
|
| 977 |
+
past_key_values=None,
|
| 978 |
+
attention_mask=None,
|
| 979 |
+
token_type_ids=None,
|
| 980 |
+
position_ids=None,
|
| 981 |
+
head_mask=None,
|
| 982 |
+
inputs_embeds=None,
|
| 983 |
+
mc_token_ids=None,
|
| 984 |
+
labels=None,
|
| 985 |
+
mc_labels=None,
|
| 986 |
+
use_cache=None,
|
| 987 |
+
output_attentions=None,
|
| 988 |
+
output_hidden_states=None,
|
| 989 |
+
return_dict=None,
|
| 990 |
+
**kwargs,
|
| 991 |
+
):
|
| 992 |
+
r"""
|
| 993 |
+
mc_token_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, num_choices)`, `optional`, default to index of the last token of the input):
|
| 994 |
+
Index of the classification token in each input sequence. Selected in the range ``[0, input_ids.size(-1) -
|
| 995 |
+
1[``.
|
| 996 |
+
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
|
| 997 |
+
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
|
| 998 |
+
``labels = input_ids`` Indices are selected in ``[-1, 0, ..., config.vocab_size]`` All labels set to
|
| 999 |
+
``-100`` are ignored (masked), the loss is only computed for labels in ``[0, ..., config.vocab_size]``
|
| 1000 |
+
mc_labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size)`, `optional`):
|
| 1001 |
+
Labels for computing the multiple choice classification loss. Indices should be in ``[0, ...,
|
| 1002 |
+
num_choices]`` where `num_choices` is the size of the second dimension of the input tensors. (see
|
| 1003 |
+
`input_ids` above)
|
| 1004 |
+
|
| 1005 |
+
Return:
|
| 1006 |
+
|
| 1007 |
+
Example::
|
| 1008 |
+
|
| 1009 |
+
>>> import torch
|
| 1010 |
+
>>> from transformers import GPT2Tokenizer, GPT2DoubleHeadsModel
|
| 1011 |
+
|
| 1012 |
+
>>> tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
|
| 1013 |
+
>>> model = GPT2DoubleHeadsModel.from_pretrained('gpt2')
|
| 1014 |
+
|
| 1015 |
+
>>> # Add a [CLS] to the vocabulary (we should train it also!)
|
| 1016 |
+
>>> num_added_tokens = tokenizer.add_special_tokens({'cls_token': '[CLS]'})
|
| 1017 |
+
|
| 1018 |
+
>>> embedding_layer = model.resize_token_embeddings(len(tokenizer)) # Update the model embeddings with the new vocabulary size
|
| 1019 |
+
|
| 1020 |
+
>>> choices = ["Hello, my dog is cute [CLS]", "Hello, my cat is cute [CLS]"]
|
| 1021 |
+
>>> encoded_choices = [tokenizer.encode(s) for s in choices]
|
| 1022 |
+
>>> cls_token_location = [tokens.index(tokenizer.cls_token_id) for tokens in encoded_choices]
|
| 1023 |
+
|
| 1024 |
+
>>> input_ids = torch.tensor(encoded_choices).unsqueeze(0) # Batch size: 1, number of choices: 2
|
| 1025 |
+
>>> mc_token_ids = torch.tensor([cls_token_location]) # Batch size: 1
|
| 1026 |
+
|
| 1027 |
+
>>> outputs = model(input_ids, mc_token_ids=mc_token_ids)
|
| 1028 |
+
>>> lm_logits = outputs.lm_logits
|
| 1029 |
+
>>> mc_logits = outputs.mc_logits
|
| 1030 |
+
|
| 1031 |
+
"""
|
| 1032 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1033 |
+
|
| 1034 |
+
transformer_outputs = self.transformer(
|
| 1035 |
+
input_ids,
|
| 1036 |
+
past_key_values=past_key_values,
|
| 1037 |
+
attention_mask=attention_mask,
|
| 1038 |
+
token_type_ids=token_type_ids,
|
| 1039 |
+
position_ids=position_ids,
|
| 1040 |
+
head_mask=head_mask,
|
| 1041 |
+
inputs_embeds=inputs_embeds,
|
| 1042 |
+
use_cache=use_cache,
|
| 1043 |
+
output_attentions=output_attentions,
|
| 1044 |
+
output_hidden_states=output_hidden_states,
|
| 1045 |
+
return_dict=return_dict,
|
| 1046 |
+
)
|
| 1047 |
+
|
| 1048 |
+
hidden_states = transformer_outputs[0]
|
| 1049 |
+
|
| 1050 |
+
lm_logits = self.lm_head(hidden_states)
|
| 1051 |
+
mc_logits = self.multiple_choice_head(hidden_states, mc_token_ids).squeeze(-1)
|
| 1052 |
+
|
| 1053 |
+
mc_loss = None
|
| 1054 |
+
if mc_labels is not None:
|
| 1055 |
+
loss_fct = CrossEntropyLoss()
|
| 1056 |
+
mc_loss = loss_fct(mc_logits.view(-1, mc_logits.size(-1)), mc_labels.view(-1))
|
| 1057 |
+
lm_loss = None
|
| 1058 |
+
if labels is not None:
|
| 1059 |
+
shift_logits = lm_logits[..., :-1, :].contiguous()
|
| 1060 |
+
shift_labels = labels[..., 1:].contiguous()
|
| 1061 |
+
loss_fct = CrossEntropyLoss()
|
| 1062 |
+
lm_loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
|
| 1063 |
+
|
| 1064 |
+
if not return_dict:
|
| 1065 |
+
output = (lm_logits, mc_logits) + transformer_outputs[1:]
|
| 1066 |
+
if mc_loss is not None:
|
| 1067 |
+
output = (mc_loss,) + output
|
| 1068 |
+
return ((lm_loss,) + output) if lm_loss is not None else output
|
| 1069 |
+
|
| 1070 |
+
return GPT2DoubleHeadsModelOutput(
|
| 1071 |
+
loss=lm_loss,
|
| 1072 |
+
mc_loss=mc_loss,
|
| 1073 |
+
logits=lm_logits,
|
| 1074 |
+
mc_logits=mc_logits,
|
| 1075 |
+
past_key_values=transformer_outputs.past_key_values,
|
| 1076 |
+
hidden_states=transformer_outputs.hidden_states,
|
| 1077 |
+
attentions=transformer_outputs.attentions,
|
| 1078 |
+
)
|
| 1079 |
+
|
| 1080 |
+
|
| 1081 |
+
@add_start_docstrings(
|
| 1082 |
+
"""
|
| 1083 |
+
The GPT2 Model transformer with a sequence classification head on top (linear layer).
|
| 1084 |
+
|
| 1085 |
+
:class:`~transformers.GPT2ForSequenceClassification` uses the last token in order to do the classification, as
|
| 1086 |
+
other causal models (e.g. GPT-1) do.
|
| 1087 |
+
|
| 1088 |
+
Since it does classification on the last token, it requires to know the position of the last token. If a
|
| 1089 |
+
:obj:`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each
|
| 1090 |
+
row. If no :obj:`pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot
|
| 1091 |
+
guess the padding tokens when :obj:`inputs_embeds` are passed instead of :obj:`input_ids`, it does the same (take
|
| 1092 |
+
the last value in each row of the batch).
|
| 1093 |
+
""",
|
| 1094 |
+
GPT2_START_DOCSTRING,
|
| 1095 |
+
)
|
| 1096 |
+
class GPT2ForSequenceClassification(GPT2PreTrainedModel):
|
| 1097 |
+
_keys_to_ignore_on_load_missing = [r"h\.\d+\.attn\.masked_bias", r"lm_head\.weight"]
|
| 1098 |
+
|
| 1099 |
+
def __init__(self, config):
|
| 1100 |
+
super().__init__(config)
|
| 1101 |
+
self.num_labels = config.num_labels
|
| 1102 |
+
self.transformer = GPT2Model(config)
|
| 1103 |
+
self.score = nn.Linear(config.n_embd, self.num_labels, bias=False)
|
| 1104 |
+
|
| 1105 |
+
self.init_weights()
|
| 1106 |
+
|
| 1107 |
+
@add_start_docstrings_to_model_forward(GPT2_INPUTS_DOCSTRING)
|
| 1108 |
+
@add_code_sample_docstrings(
|
| 1109 |
+
tokenizer_class=_TOKENIZER_FOR_DOC,
|
| 1110 |
+
checkpoint="microsoft/dialogrpt",
|
| 1111 |
+
output_type=SequenceClassifierOutputWithPast,
|
| 1112 |
+
config_class=_CONFIG_FOR_DOC,
|
| 1113 |
+
)
|
| 1114 |
+
def forward(
|
| 1115 |
+
self,
|
| 1116 |
+
input_ids=None,
|
| 1117 |
+
past_key_values=None,
|
| 1118 |
+
attention_mask=None,
|
| 1119 |
+
token_type_ids=None,
|
| 1120 |
+
position_ids=None,
|
| 1121 |
+
head_mask=None,
|
| 1122 |
+
inputs_embeds=None,
|
| 1123 |
+
labels=None,
|
| 1124 |
+
use_cache=None,
|
| 1125 |
+
output_attentions=None,
|
| 1126 |
+
output_hidden_states=None,
|
| 1127 |
+
return_dict=None,
|
| 1128 |
+
):
|
| 1129 |
+
r"""
|
| 1130 |
+
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
|
| 1131 |
+
Labels for computing the sequence classification/regression loss. Indices should be in :obj:`[0, ...,
|
| 1132 |
+
config.num_labels - 1]`. If :obj:`config.num_labels == 1` a regression loss is computed (Mean-Square loss),
|
| 1133 |
+
If :obj:`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
| 1134 |
+
"""
|
| 1135 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1136 |
+
|
| 1137 |
+
transformer_outputs = self.transformer(
|
| 1138 |
+
input_ids,
|
| 1139 |
+
past_key_values=past_key_values,
|
| 1140 |
+
attention_mask=attention_mask,
|
| 1141 |
+
token_type_ids=token_type_ids,
|
| 1142 |
+
position_ids=position_ids,
|
| 1143 |
+
head_mask=head_mask,
|
| 1144 |
+
inputs_embeds=inputs_embeds,
|
| 1145 |
+
use_cache=use_cache,
|
| 1146 |
+
output_attentions=output_attentions,
|
| 1147 |
+
output_hidden_states=output_hidden_states,
|
| 1148 |
+
return_dict=return_dict,
|
| 1149 |
+
)
|
| 1150 |
+
hidden_states = transformer_outputs[0]
|
| 1151 |
+
logits = self.score(hidden_states)
|
| 1152 |
+
|
| 1153 |
+
if input_ids is not None:
|
| 1154 |
+
batch_size, sequence_length = input_ids.shape[:2]
|
| 1155 |
+
else:
|
| 1156 |
+
batch_size, sequence_length = inputs_embeds.shape[:2]
|
| 1157 |
+
|
| 1158 |
+
assert (
|
| 1159 |
+
self.config.pad_token_id is not None or batch_size == 1
|
| 1160 |
+
), "Cannot handle batch sizes > 1 if no padding token is defined."
|
| 1161 |
+
if self.config.pad_token_id is None:
|
| 1162 |
+
sequence_lengths = -1
|
| 1163 |
+
else:
|
| 1164 |
+
if input_ids is not None:
|
| 1165 |
+
sequence_lengths = torch.ne(input_ids, self.config.pad_token_id).sum(-1) - 1
|
| 1166 |
+
else:
|
| 1167 |
+
sequence_lengths = -1
|
| 1168 |
+
logger.warning(
|
| 1169 |
+
f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
|
| 1170 |
+
f"unexpected if using padding tokens in conjunction with `inputs_embeds.`"
|
| 1171 |
+
)
|
| 1172 |
+
|
| 1173 |
+
pooled_logits = logits[range(batch_size), sequence_lengths]
|
| 1174 |
+
|
| 1175 |
+
loss = None
|
| 1176 |
+
if labels is not None:
|
| 1177 |
+
if self.num_labels == 1:
|
| 1178 |
+
# We are doing regression
|
| 1179 |
+
loss_fct = MSELoss()
|
| 1180 |
+
loss = loss_fct(pooled_logits.view(-1), labels.to(self.dtype).view(-1))
|
| 1181 |
+
else:
|
| 1182 |
+
loss_fct = CrossEntropyLoss()
|
| 1183 |
+
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
|
| 1184 |
+
|
| 1185 |
+
if not return_dict:
|
| 1186 |
+
output = (pooled_logits,) + transformer_outputs[1:]
|
| 1187 |
+
return ((loss,) + output) if loss is not None else output
|
| 1188 |
+
|
| 1189 |
+
return SequenceClassifierOutputWithPast(
|
| 1190 |
+
loss=loss,
|
| 1191 |
+
logits=pooled_logits,
|
| 1192 |
+
past_key_values=transformer_outputs.past_key_values,
|
| 1193 |
+
hidden_states=transformer_outputs.hidden_states,
|
| 1194 |
+
attentions=transformer_outputs.attentions,
|
| 1195 |
+
)
|
| 1196 |
+
|
{pages → backend}/preprocess.py
RENAMED
|
File without changes
|
{pages → backend}/processor.py
RENAMED
|
@@ -122,8 +122,7 @@ def write():
|
|
| 122 |
|
| 123 |
st.sidebar.title("Model Selector")
|
| 124 |
model_selector = st.sidebar.selectbox(
|
| 125 |
-
"""Select None to enable further filters""",
|
| 126 |
-
options=MODELS_to_SELECT,
|
| 127 |
)
|
| 128 |
if model_selector == "None":
|
| 129 |
keep_emojis = st.sidebar.checkbox("Keep emojis", False)
|
|
|
|
| 122 |
|
| 123 |
st.sidebar.title("Model Selector")
|
| 124 |
model_selector = st.sidebar.selectbox(
|
| 125 |
+
"""Select None to enable further filters""", options=MODELS_to_SELECT, index=3
|
|
|
|
| 126 |
)
|
| 127 |
if model_selector == "None":
|
| 128 |
keep_emojis = st.sidebar.checkbox("Keep emojis", False)
|
backend/services.py
ADDED
|
@@ -0,0 +1,174 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
import os
|
| 3 |
+
|
| 4 |
+
import requests
|
| 5 |
+
from transformers import GPT2LMHeadModel, GPT2Tokenizer, pipeline, set_seed
|
| 6 |
+
from .modeling_gpt2 import GPT2LMHeadModel as GROVERLMHeadModel
|
| 7 |
+
from .preprocess import ArabertPreprocessor
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
# Taken and Modified from https://huggingface.co/spaces/flax-community/chef-transformer/blob/main/app.py
|
| 11 |
+
class TextGeneration:
|
| 12 |
+
def __init__(self):
|
| 13 |
+
self.debug = False
|
| 14 |
+
self.generation_pipline = {}
|
| 15 |
+
self.preprocessor = ArabertPreprocessor(model_name="aragpt2-mega")
|
| 16 |
+
self.tokenizer = GPT2Tokenizer.from_pretrained(
|
| 17 |
+
"aubmindlab/aragpt2-mega", use_fast=False
|
| 18 |
+
)
|
| 19 |
+
self.tokenizer.pad_token = self.tokenizer.eos_token
|
| 20 |
+
self.API_KEY = os.getenv("API_KEY")
|
| 21 |
+
self.headers = {"Authorization": f"Bearer {self.API_KEY}"}
|
| 22 |
+
# self.model_names_or_paths = {
|
| 23 |
+
# "aragpt2-medium": "D:/ML/Models/aragpt2-medium",
|
| 24 |
+
# "aragpt2-base": "D:/ML/Models/aragpt2-base",
|
| 25 |
+
# }
|
| 26 |
+
self.model_names_or_paths = {
|
| 27 |
+
"aragpt2-medium": "https://huggingface.co/aubmindlab/aragpt2-medium",
|
| 28 |
+
"aragpt2-base": "https://huggingface.co/aubmindlab/aragpt2-base",
|
| 29 |
+
"aragpt2-large": "https://huggingface.co/aubmindlab/aragpt2-large",
|
| 30 |
+
"aragpt2-mega": "https://huggingface.co/aubmindlab/aragpt2-mega",
|
| 31 |
+
}
|
| 32 |
+
set_seed(42)
|
| 33 |
+
|
| 34 |
+
def load_pipeline(self):
|
| 35 |
+
for model_name, model_path in self.model_names_or_paths.items():
|
| 36 |
+
if "base" in model_name or "medium" in model_name:
|
| 37 |
+
self.generation_pipline[model_name] = pipeline(
|
| 38 |
+
"text-generation",
|
| 39 |
+
model=GPT2LMHeadModel.from_pretrained(model_path),
|
| 40 |
+
tokenizer=self.tokenizer,
|
| 41 |
+
device=-1,
|
| 42 |
+
)
|
| 43 |
+
else:
|
| 44 |
+
self.generation_pipline[model_name] = pipeline(
|
| 45 |
+
"text-generation",
|
| 46 |
+
model=GROVERLMHeadModel.from_pretrained(model_path),
|
| 47 |
+
tokenizer=self.tokenizer,
|
| 48 |
+
device=-1,
|
| 49 |
+
)
|
| 50 |
+
|
| 51 |
+
def load(self):
|
| 52 |
+
if not self.debug:
|
| 53 |
+
self.load_pipeline()
|
| 54 |
+
|
| 55 |
+
def generate(
|
| 56 |
+
self,
|
| 57 |
+
model_name,
|
| 58 |
+
prompt,
|
| 59 |
+
max_new_tokens: int,
|
| 60 |
+
temperature: float,
|
| 61 |
+
top_k: int,
|
| 62 |
+
top_p: float,
|
| 63 |
+
repetition_penalty: float,
|
| 64 |
+
no_repeat_ngram_size: int,
|
| 65 |
+
do_sample: bool,
|
| 66 |
+
num_beams: int,
|
| 67 |
+
):
|
| 68 |
+
prompt = self.preprocessor.preprocess(prompt)
|
| 69 |
+
return_full_text = False
|
| 70 |
+
return_text = True
|
| 71 |
+
num_return_sequences = 1
|
| 72 |
+
pad_token_id = 0
|
| 73 |
+
eos_token_id = 0
|
| 74 |
+
input_tok = self.tokenizer.tokenize(prompt)
|
| 75 |
+
max_length = len(input_tok) + max_new_tokens
|
| 76 |
+
if max_length > 1024:
|
| 77 |
+
max_length = 1024
|
| 78 |
+
if not self.debug:
|
| 79 |
+
generated_text = self.generation_pipline[model_name.lower()](
|
| 80 |
+
prompt,
|
| 81 |
+
max_length=max_length,
|
| 82 |
+
temperature=temperature,
|
| 83 |
+
top_k=top_k,
|
| 84 |
+
top_p=top_p,
|
| 85 |
+
repetition_penalty=repetition_penalty,
|
| 86 |
+
no_repeat_ngram_size=no_repeat_ngram_size,
|
| 87 |
+
pad_token_id=pad_token_id,
|
| 88 |
+
eos_token_id=eos_token_id,
|
| 89 |
+
return_full_text=return_full_text,
|
| 90 |
+
return_text=return_text,
|
| 91 |
+
do_sample=do_sample,
|
| 92 |
+
num_beams=num_beams,
|
| 93 |
+
num_return_sequences=num_return_sequences,
|
| 94 |
+
)[0]["generated_text"]
|
| 95 |
+
else:
|
| 96 |
+
generated_text = self.generate_by_query(
|
| 97 |
+
prompt,
|
| 98 |
+
model_name,
|
| 99 |
+
max_length=max_length,
|
| 100 |
+
temperature=temperature,
|
| 101 |
+
top_k=top_k,
|
| 102 |
+
top_p=top_p,
|
| 103 |
+
repetition_penalty=repetition_penalty,
|
| 104 |
+
no_repeat_ngram_size=no_repeat_ngram_size,
|
| 105 |
+
pad_token_id=pad_token_id,
|
| 106 |
+
eos_token_id=eos_token_id,
|
| 107 |
+
return_full_text=return_full_text,
|
| 108 |
+
return_text=return_text,
|
| 109 |
+
do_sample=do_sample,
|
| 110 |
+
num_beams=num_beams,
|
| 111 |
+
num_return_sequences=num_return_sequences,
|
| 112 |
+
)
|
| 113 |
+
# print(generated_text)
|
| 114 |
+
if isinstance(generated_text, dict):
|
| 115 |
+
if "error" in generated_text:
|
| 116 |
+
if "is currently loading" in generated_text["error"]:
|
| 117 |
+
return f"Model is currently loading, estimated time is {generated_text['estimated_time']}"
|
| 118 |
+
return generated_text["error"]
|
| 119 |
+
else:
|
| 120 |
+
return "Something happened 🤷♂️!!"
|
| 121 |
+
else:
|
| 122 |
+
generated_text = generated_text[0]["generated_text"]
|
| 123 |
+
return self.preprocessor.unpreprocess(generated_text)
|
| 124 |
+
|
| 125 |
+
def query(self, payload, model_name):
|
| 126 |
+
data = json.dumps(payload)
|
| 127 |
+
url = (
|
| 128 |
+
"https://api-inference.huggingface.co/models/aubmindlab/"
|
| 129 |
+
+ model_name.lower()
|
| 130 |
+
)
|
| 131 |
+
response = requests.request("POST", url, headers=self.headers, data=data)
|
| 132 |
+
return json.loads(response.content.decode("utf-8"))
|
| 133 |
+
|
| 134 |
+
def generate_by_query(
|
| 135 |
+
self,
|
| 136 |
+
prompt: str,
|
| 137 |
+
model_name: str,
|
| 138 |
+
max_length: int,
|
| 139 |
+
temperature: float,
|
| 140 |
+
top_k: int,
|
| 141 |
+
top_p: float,
|
| 142 |
+
repetition_penalty: float,
|
| 143 |
+
no_repeat_ngram_size: int,
|
| 144 |
+
pad_token_id: int,
|
| 145 |
+
eos_token_id: int,
|
| 146 |
+
return_full_text: int,
|
| 147 |
+
return_text: int,
|
| 148 |
+
do_sample: bool,
|
| 149 |
+
num_beams: int,
|
| 150 |
+
num_return_sequences: int,
|
| 151 |
+
):
|
| 152 |
+
payload = {
|
| 153 |
+
"inputs": prompt,
|
| 154 |
+
"parameters": {
|
| 155 |
+
"max_length ": max_length,
|
| 156 |
+
"top_k": top_k,
|
| 157 |
+
"top_p": top_p,
|
| 158 |
+
"temperature": temperature,
|
| 159 |
+
"repetition_penalty": repetition_penalty,
|
| 160 |
+
"no_repeat_ngram_size": no_repeat_ngram_size,
|
| 161 |
+
"pad_token_id": pad_token_id,
|
| 162 |
+
"eos_token_id": eos_token_id,
|
| 163 |
+
"return_full_text": return_full_text,
|
| 164 |
+
"return_text": return_text,
|
| 165 |
+
"pad_token_id": pad_token_id,
|
| 166 |
+
"do_sample": do_sample,
|
| 167 |
+
"num_beams": num_beams,
|
| 168 |
+
"num_return_sequences": num_return_sequences,
|
| 169 |
+
},
|
| 170 |
+
"options": {
|
| 171 |
+
"use_cache": True,
|
| 172 |
+
},
|
| 173 |
+
}
|
| 174 |
+
return self.query(payload, model_name)
|
requirements.txt
CHANGED
|
@@ -4,4 +4,6 @@ python-bidi==0.4.2
|
|
| 4 |
PyArabic
|
| 5 |
farasapy==0.0.14
|
| 6 |
emoji==1.4.2
|
| 7 |
-
awesome_streamlit
|
|
|
|
|
|
|
|
|
| 4 |
PyArabic
|
| 5 |
farasapy==0.0.14
|
| 6 |
emoji==1.4.2
|
| 7 |
+
awesome_streamlit
|
| 8 |
+
torch
|
| 9 |
+
transformers==4.10.0
|
test.py
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#%%
|
| 2 |
+
from transformers import GPT2Tokenizer
|
| 3 |
+
|
| 4 |
+
# %%
|
| 5 |
+
tok = GPT2Tokenizer.from_pretrained("D:/ML/Models/aragpt2-medium", use_fast=False)
|
| 6 |
+
# %%
|
| 7 |
+
tok.pad_token = tok.eos_token
|
| 8 |
+
#%%
|
| 9 |
+
tok.pad_token_id = [tok.eos_token_id]
|
| 10 |
+
# %%
|