import os import argparse import torch import torchaudio from tqdm import tqdm from scipy.io.wavfile import read from scipy.io.wavfile import write # torch=1.9.0 -> pip install torchaudio==0.9.0 -i https://mirrors.aliyun.com/pypi/simple/ # this file is for VCTK MAX_WAV_VALUE = 32768.0 def cut_direct_content(iWave, oWave): source, sr = torchaudio.load(iWave) stft = torch.stft(source, 1024, 256, 1024, torch.hann_window(1024), return_complex=True) stft[:, 0, :] = 0 stft[:, 1, :] = 0 istft = torch.istft(stft, 1024, 256, 1024, torch.hann_window(1024)) audio = istft.squeeze() audio = MAX_WAV_VALUE * audio audio = audio.clamp(min=-MAX_WAV_VALUE, max=MAX_WAV_VALUE-1) audio = audio.short() audio = audio.data.cpu().detach().numpy() write(oWave, sr, audio) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("-i", help="input path", dest="inPath", required=True) parser.add_argument("-o", help="output path", dest="outPath", required=True) args = parser.parse_args() print(args.inPath) print(args.outPath) os.makedirs(args.outPath, exist_ok=True) rootPath = args.inPath outPath = args.outPath for spks in os.listdir(rootPath): if (os.path.isdir(f"./{rootPath}/{spks}")): os.makedirs(f"./{outPath}/{spks}", exist_ok=True) files = [f for f in os.listdir(f"./{rootPath}/{spks}") if f.endswith(".wav")] for file in tqdm(files, desc=f'Processing cdc {spks}'): iWave = f"./{rootPath}/{spks}/{file}" oWave = f"./{outPath}/{spks}/{file}" cut_direct_content(iWave, oWave)