import sys,os sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) import numpy as np import argparse import torch import requests from tqdm import tqdm from whisper.model import Whisper, ModelDimensions from whisper.audio import load_audio, pad_or_trim, log_mel_spectrogram def load_model(path, device) -> Whisper: checkpoint = torch.load(path, map_location="cpu") dims = ModelDimensions(**checkpoint["dims"]) # print(dims) model = Whisper(dims) del model.decoder cut = len(model.encoder.blocks) // 4 cut = -1 * cut del model.encoder.blocks[cut:] model.load_state_dict(checkpoint["model_state_dict"], strict=False) model.eval() if not (device == "cpu"): model.half() model.to(device) # torch.save({ # 'dims': checkpoint["dims"], # 'model_state_dict': model.state_dict(), # }, "large-v2.pt") return model def check_and_download_model(): temp_dir = "/tmp" model_path = os.path.join(temp_dir, "large-v2.pt") if os.path.exists(model_path): return f"モデルは既に存在します: {model_path}" url = "https://openaipublic.azureedge.net/main/whisper/models/81f7c96c852ee8fc832187b0132e569d6c3065a3252ed18e56effd0b6a73e524/large-v2.pt" try: response = requests.get(url, stream=True) response.raise_for_status() total_size = int(response.headers.get('content-length', 0)) with open(model_path, 'wb') as f, tqdm( desc=model_path, total=total_size, unit='iB', unit_scale=True, unit_divisor=1024, ) as pbar: for data in response.iter_content(chunk_size=1024): size = f.write(data) pbar.update(size) return f"モデルのダウンロードが完了しました: {model_path}" except Exception as e: return f"エラーが発生しました: {e}" def pred_ppg(whisper: Whisper, wavPath, ppgPath, device): audio = load_audio(wavPath) audln = audio.shape[0] ppg_a = [] idx_s = 0 while (idx_s + 15 * 16000 < audln): short = audio[idx_s:idx_s + 15 * 16000] idx_s = idx_s + 15 * 16000 ppgln = 15 * 16000 // 320 # short = pad_or_trim(short) mel = log_mel_spectrogram(short).to(device) if not (device == "cpu"): mel = mel.half() with torch.no_grad(): mel = mel + torch.randn_like(mel) * 0.1 ppg = whisper.encoder(mel.unsqueeze(0)).squeeze().data.cpu().float().numpy() ppg = ppg[:ppgln,] # [length, dim=1024] ppg_a.extend(ppg) if (idx_s < audln): short = audio[idx_s:audln] ppgln = (audln - idx_s) // 320 # short = pad_or_trim(short) mel = log_mel_spectrogram(short).to(device) if not (device == "cpu"): mel = mel.half() with torch.no_grad(): mel = mel + torch.randn_like(mel) * 0.1 ppg = whisper.encoder(mel.unsqueeze(0)).squeeze().data.cpu().float().numpy() ppg = ppg[:ppgln,] # [length, dim=1024] ppg_a.extend(ppg) np.save(ppgPath, ppg_a, allow_pickle=False) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("-w", "--wav", help="wav", dest="wav", required=True) parser.add_argument("-p", "--ppg", help="ppg", dest="ppg", required=True) args = parser.parse_args() print(args.wav) print(args.ppg) wavPath = args.wav ppgPath = args.ppg device = "cuda" if torch.cuda.is_available() else "cpu" _ =check_and_download_model() whisper = load_model("/tmp/large-v2.pt", device) pred_ppg(whisper, wavPath, ppgPath, device)